You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.5 KiB
135 lines
4.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from deepspeech.models.ds2_online import DeepSpeech2ModelOnline
|
|
|
|
|
|
class TestDeepSpeech2ModelOnline(unittest.TestCase):
|
|
def setUp(self):
|
|
paddle.set_device('cpu')
|
|
|
|
self.batch_size = 2
|
|
self.feat_dim = 161
|
|
max_len = 64
|
|
|
|
# (B, T, D)
|
|
audio = np.random.randn(self.batch_size, max_len, self.feat_dim)
|
|
audio_len = np.random.randint(max_len, size=self.batch_size)
|
|
audio_len[-1] = max_len
|
|
# (B, U)
|
|
text = np.array([[1, 2], [1, 2]])
|
|
text_len = np.array([2] * self.batch_size)
|
|
|
|
self.audio = paddle.to_tensor(audio, dtype='float32')
|
|
self.audio_len = paddle.to_tensor(audio_len, dtype='int64')
|
|
self.text = paddle.to_tensor(text, dtype='int32')
|
|
self.text_len = paddle.to_tensor(text_len, dtype='int64')
|
|
|
|
def test_ds2_1(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_2(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=True)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_3(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_4(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=True)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_5(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_6(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
model.eval()
|
|
|
|
probs, eouts, eouts_len, final_state_list = model.decode_prob(
|
|
self.audio, self.audio_len)
|
|
probs_chk, eouts_chk, eouts_len_chk, final_state_list_chk = model.decode_prob_chunk_by_chunk(
|
|
self.audio, self.audio_len)
|
|
for i in range(len(final_state_list)):
|
|
for j in range(2):
|
|
self.assertEqual(
|
|
np.sum(
|
|
np.abs(final_state_list[i][j].numpy() -
|
|
final_state_list_chk[i][j].numpy())), 0)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|