You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
9.8 KiB
275 lines
9.8 KiB
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
from paddle import DataParallel
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from paddle.io import DistributedBatchSampler
|
|
from paddle.optimizer import AdamW
|
|
from paddle.optimizer.lr import OneCycleLR
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.cli.utils import download_and_decompress
|
|
from paddlespeech.resource.pretrained_models import StarGANv2VC_source
|
|
from paddlespeech.t2s.datasets.am_batch_fn import build_starganv2_vc_collate_fn
|
|
from paddlespeech.t2s.datasets.data_table import StarGANv2VCDataTable
|
|
from paddlespeech.t2s.models.starganv2_vc import ASRCNN
|
|
from paddlespeech.t2s.models.starganv2_vc import Discriminator
|
|
from paddlespeech.t2s.models.starganv2_vc import Generator
|
|
from paddlespeech.t2s.models.starganv2_vc import JDCNet
|
|
from paddlespeech.t2s.models.starganv2_vc import MappingNetwork
|
|
from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCEvaluator
|
|
from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCUpdater
|
|
from paddlespeech.t2s.models.starganv2_vc import StyleEncoder
|
|
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
|
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
|
from paddlespeech.t2s.training.seeding import seed_everything
|
|
from paddlespeech.t2s.training.trainer import Trainer
|
|
from paddlespeech.utils.env import MODEL_HOME
|
|
|
|
|
|
def train_sp(args, config):
|
|
# decides device type and whether to run in parallel
|
|
# setup running environment correctly
|
|
world_size = paddle.distributed.get_world_size()
|
|
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
else:
|
|
paddle.set_device("gpu")
|
|
if world_size > 1:
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
# set the random seed, it is a must for multiprocess training
|
|
seed_everything(config.seed)
|
|
|
|
print(
|
|
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
|
)
|
|
# to edit
|
|
fields = ["speech", "speech_lengths"]
|
|
converters = {"speech": np.load}
|
|
|
|
collate_fn = build_starganv2_vc_collate_fn(
|
|
latent_dim=config['mapping_network_params']['latent_dim'],
|
|
max_mel_length=config['max_mel_length'])
|
|
|
|
# dataloader has been too verbose
|
|
logging.getLogger("DataLoader").disabled = True
|
|
|
|
# construct dataset for training and validation
|
|
with jsonlines.open(args.train_metadata, 'r') as reader:
|
|
train_metadata = list(reader)
|
|
train_dataset = StarGANv2VCDataTable(data=train_metadata)
|
|
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
|
dev_metadata = list(reader)
|
|
dev_dataset = StarGANv2VCDataTable(data=dev_metadata)
|
|
|
|
# collate function and dataloader
|
|
train_sampler = DistributedBatchSampler(
|
|
train_dataset,
|
|
batch_size=config.batch_size,
|
|
shuffle=True,
|
|
drop_last=True)
|
|
|
|
print("samplers done!")
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
batch_sampler=train_sampler,
|
|
collate_fn=collate_fn,
|
|
num_workers=config.num_workers)
|
|
|
|
dev_dataloader = DataLoader(
|
|
dev_dataset,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
batch_size=config.batch_size,
|
|
collate_fn=collate_fn,
|
|
num_workers=config.num_workers)
|
|
|
|
print("dataloaders done!")
|
|
|
|
# load model
|
|
model_version = '1.0'
|
|
uncompress_path = download_and_decompress(StarGANv2VC_source[model_version],
|
|
MODEL_HOME)
|
|
# 根据 speaker 的个数修改 num_domains
|
|
# 源码的预训练模型和 default.yaml 里面默认是 20
|
|
if args.speaker_dict is not None:
|
|
with open(args.speaker_dict, 'rt', encoding='utf-8') as f:
|
|
spk_id = [line.strip().split() for line in f.readlines()]
|
|
spk_num = len(spk_id)
|
|
print("spk_num:", spk_num)
|
|
config['mapping_network_params']['num_domains'] = spk_num
|
|
config['style_encoder_params']['num_domains'] = spk_num
|
|
config['discriminator_params']['num_domains'] = spk_num
|
|
|
|
generator = Generator(**config['generator_params'])
|
|
mapping_network = MappingNetwork(**config['mapping_network_params'])
|
|
style_encoder = StyleEncoder(**config['style_encoder_params'])
|
|
discriminator = Discriminator(**config['discriminator_params'])
|
|
|
|
# load pretrained model
|
|
jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz')
|
|
asr_model_dir = os.path.join(uncompress_path, 'asr.pdz')
|
|
|
|
F0_model = JDCNet(num_class=1, seq_len=config['max_mel_length'])
|
|
F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params'])
|
|
F0_model.eval()
|
|
|
|
asr_model = ASRCNN(**config['asr_params'])
|
|
asr_model.set_state_dict(paddle.load(asr_model_dir)['main_params'])
|
|
asr_model.eval()
|
|
|
|
if world_size > 1:
|
|
generator = DataParallel(generator)
|
|
discriminator = DataParallel(discriminator)
|
|
print("models done!")
|
|
|
|
lr_schedule_g = OneCycleLR(**config["generator_scheduler_params"])
|
|
optimizer_g = AdamW(
|
|
learning_rate=lr_schedule_g,
|
|
parameters=generator.parameters(),
|
|
**config["generator_optimizer_params"])
|
|
|
|
lr_schedule_s = OneCycleLR(**config["style_encoder_scheduler_params"])
|
|
optimizer_s = AdamW(
|
|
learning_rate=lr_schedule_s,
|
|
parameters=style_encoder.parameters(),
|
|
**config["style_encoder_optimizer_params"])
|
|
|
|
lr_schedule_m = OneCycleLR(**config["mapping_network_scheduler_params"])
|
|
optimizer_m = AdamW(
|
|
learning_rate=lr_schedule_m,
|
|
parameters=mapping_network.parameters(),
|
|
**config["mapping_network_optimizer_params"])
|
|
|
|
lr_schedule_d = OneCycleLR(**config["discriminator_scheduler_params"])
|
|
optimizer_d = AdamW(
|
|
learning_rate=lr_schedule_d,
|
|
parameters=discriminator.parameters(),
|
|
**config["discriminator_optimizer_params"])
|
|
print("optimizers done!")
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
if dist.get_rank() == 0:
|
|
config_name = args.config.split("/")[-1]
|
|
# copy conf to output_dir
|
|
shutil.copyfile(args.config, output_dir / config_name)
|
|
|
|
updater = StarGANv2VCUpdater(
|
|
models={
|
|
"generator": generator,
|
|
"style_encoder": style_encoder,
|
|
"mapping_network": mapping_network,
|
|
"discriminator": discriminator,
|
|
"F0_model": F0_model,
|
|
"asr_model": asr_model,
|
|
},
|
|
optimizers={
|
|
"generator": optimizer_g,
|
|
"style_encoder": optimizer_s,
|
|
"mapping_network": optimizer_m,
|
|
"discriminator": optimizer_d,
|
|
},
|
|
schedulers={
|
|
"generator": lr_schedule_g,
|
|
"style_encoder": lr_schedule_s,
|
|
"mapping_network": lr_schedule_m,
|
|
"discriminator": lr_schedule_d,
|
|
},
|
|
dataloader=train_dataloader,
|
|
g_loss_params=config.loss_params.g_loss,
|
|
d_loss_params=config.loss_params.d_loss,
|
|
adv_cls_epoch=config.loss_params.adv_cls_epoch,
|
|
con_reg_epoch=config.loss_params.con_reg_epoch,
|
|
output_dir=output_dir)
|
|
|
|
evaluator = StarGANv2VCEvaluator(
|
|
models={
|
|
"generator": generator,
|
|
"style_encoder": style_encoder,
|
|
"mapping_network": mapping_network,
|
|
"discriminator": discriminator,
|
|
"F0_model": F0_model,
|
|
"asr_model": asr_model,
|
|
},
|
|
dataloader=dev_dataloader,
|
|
g_loss_params=config.loss_params.g_loss,
|
|
d_loss_params=config.loss_params.d_loss,
|
|
adv_cls_epoch=config.loss_params.adv_cls_epoch,
|
|
con_reg_epoch=config.loss_params.con_reg_epoch,
|
|
output_dir=output_dir)
|
|
|
|
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
|
|
|
|
if dist.get_rank() == 0:
|
|
trainer.extend(evaluator, trigger=(1, "epoch"))
|
|
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
|
|
trainer.extend(
|
|
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
|
|
print("Trainer Done!")
|
|
|
|
trainer.run()
|
|
|
|
|
|
def main():
|
|
# parse args and config and redirect to train_sp
|
|
|
|
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
|
|
parser.add_argument("--config", type=str, help="HiFiGAN config file.")
|
|
parser.add_argument("--train-metadata", type=str, help="training data.")
|
|
parser.add_argument("--dev-metadata", type=str, help="dev data.")
|
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
parser.add_argument(
|
|
"--speaker-dict",
|
|
type=str,
|
|
default=None,
|
|
help="speaker id map file for multiple speaker model.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
with open(args.config, 'rt') as f:
|
|
config = CfgNode(yaml.safe_load(f))
|
|
|
|
print("========Args========")
|
|
print(yaml.safe_dump(vars(args)))
|
|
print("========Config========")
|
|
print(config)
|
|
print(
|
|
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
|
)
|
|
|
|
# dispatch
|
|
if args.ngpu > 1:
|
|
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
|
else:
|
|
train_sp(args, config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|