You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
10 KiB
306 lines
10 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
from paddle import DataParallel
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from paddle.optimizer import AdamW
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.datasets.am_batch_fn import jets_multi_spk_batch_fn
|
|
from paddlespeech.t2s.datasets.am_batch_fn import jets_single_spk_batch_fn
|
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
|
from paddlespeech.t2s.datasets.sampler import ErnieSATSampler
|
|
from paddlespeech.t2s.models.jets import JETS
|
|
from paddlespeech.t2s.models.jets import JETSEvaluator
|
|
from paddlespeech.t2s.models.jets import JETSUpdater
|
|
from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
|
|
from paddlespeech.t2s.modules.losses import FeatureMatchLoss
|
|
from paddlespeech.t2s.modules.losses import ForwardSumLoss
|
|
from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
|
|
from paddlespeech.t2s.modules.losses import MelSpectrogramLoss
|
|
from paddlespeech.t2s.modules.losses import VarianceLoss
|
|
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
|
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
|
from paddlespeech.t2s.training.optimizer import scheduler_classes
|
|
from paddlespeech.t2s.training.seeding import seed_everything
|
|
from paddlespeech.t2s.training.trainer import Trainer
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
def train_sp(args, config):
|
|
# decides device type and whether to run in parallel
|
|
# setup running environment correctly
|
|
world_size = paddle.distributed.get_world_size()
|
|
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
else:
|
|
paddle.set_device("gpu")
|
|
if world_size > 1:
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
# set the random seed, it is a must for multiprocess training
|
|
seed_everything(config.seed)
|
|
|
|
print(
|
|
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
|
)
|
|
|
|
# dataloader has been too verbose
|
|
logging.getLogger("DataLoader").disabled = True
|
|
|
|
fields = [
|
|
"text", "text_lengths", "feats", "feats_lengths", "wave", "durations",
|
|
"pitch", "energy"
|
|
]
|
|
|
|
converters = {
|
|
"wave": np.load,
|
|
"feats": np.load,
|
|
"pitch": np.load,
|
|
"energy": np.load,
|
|
}
|
|
spk_num = None
|
|
if args.speaker_dict is not None:
|
|
print("multiple speaker jets!")
|
|
collate_fn = jets_multi_spk_batch_fn
|
|
with open(args.speaker_dict, 'rt', encoding='utf-8') as f:
|
|
spk_id = [line.strip().split() for line in f.readlines()]
|
|
spk_num = len(spk_id)
|
|
fields += ["spk_id"]
|
|
elif args.voice_cloning:
|
|
print("Training voice cloning!")
|
|
collate_fn = jets_multi_spk_batch_fn
|
|
fields += ["spk_emb"]
|
|
converters["spk_emb"] = np.load
|
|
else:
|
|
print("single speaker jets!")
|
|
collate_fn = jets_single_spk_batch_fn
|
|
print("spk_num:", spk_num)
|
|
|
|
# construct dataset for training and validation
|
|
with jsonlines.open(args.train_metadata, 'r') as reader:
|
|
train_metadata = list(reader)
|
|
train_dataset = DataTable(
|
|
data=train_metadata,
|
|
fields=fields,
|
|
converters=converters, )
|
|
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
|
dev_metadata = list(reader)
|
|
dev_dataset = DataTable(
|
|
data=dev_metadata,
|
|
fields=fields,
|
|
converters=converters, )
|
|
|
|
# collate function and dataloader
|
|
train_sampler = ErnieSATSampler(
|
|
train_dataset,
|
|
batch_size=config.batch_size,
|
|
shuffle=False,
|
|
drop_last=True)
|
|
dev_sampler = ErnieSATSampler(
|
|
dev_dataset,
|
|
batch_size=config.batch_size,
|
|
shuffle=False,
|
|
drop_last=False)
|
|
print("samplers done!")
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
batch_sampler=train_sampler,
|
|
collate_fn=collate_fn,
|
|
num_workers=config.num_workers)
|
|
|
|
dev_dataloader = DataLoader(
|
|
dev_dataset,
|
|
batch_sampler=dev_sampler,
|
|
collate_fn=collate_fn,
|
|
num_workers=config.num_workers)
|
|
print("dataloaders done!")
|
|
|
|
with open(args.phones_dict, 'rt', encoding='utf-8') as f:
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
vocab_size = len(phn_id)
|
|
print("vocab_size:", vocab_size)
|
|
|
|
odim = config.n_mels
|
|
config["model"]["generator_params"]["spks"] = spk_num
|
|
model = JETS(idim=vocab_size, odim=odim, **config["model"])
|
|
gen_parameters = model.generator.parameters()
|
|
dis_parameters = model.discriminator.parameters()
|
|
if world_size > 1:
|
|
model = DataParallel(model)
|
|
gen_parameters = model._layers.generator.parameters()
|
|
dis_parameters = model._layers.discriminator.parameters()
|
|
|
|
print("model done!")
|
|
|
|
# loss
|
|
criterion_mel = MelSpectrogramLoss(
|
|
**config["mel_loss_params"], )
|
|
criterion_feat_match = FeatureMatchLoss(
|
|
**config["feat_match_loss_params"], )
|
|
criterion_gen_adv = GeneratorAdversarialLoss(
|
|
**config["generator_adv_loss_params"], )
|
|
criterion_dis_adv = DiscriminatorAdversarialLoss(
|
|
**config["discriminator_adv_loss_params"], )
|
|
criterion_var = VarianceLoss()
|
|
criterion_forwardsum = ForwardSumLoss()
|
|
|
|
print("criterions done!")
|
|
|
|
lr_schedule_g = scheduler_classes[config["generator_scheduler"]](
|
|
**config["generator_scheduler_params"])
|
|
optimizer_g = AdamW(
|
|
learning_rate=lr_schedule_g,
|
|
parameters=gen_parameters,
|
|
**config["generator_optimizer_params"])
|
|
|
|
lr_schedule_d = scheduler_classes[config["discriminator_scheduler"]](
|
|
**config["discriminator_scheduler_params"])
|
|
optimizer_d = AdamW(
|
|
learning_rate=lr_schedule_d,
|
|
parameters=dis_parameters,
|
|
**config["discriminator_optimizer_params"])
|
|
|
|
print("optimizers done!")
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
if dist.get_rank() == 0:
|
|
config_name = args.config.split("/")[-1]
|
|
# copy conf to output_dir
|
|
shutil.copyfile(args.config, output_dir / config_name)
|
|
|
|
updater = JETSUpdater(
|
|
model=model,
|
|
optimizers={
|
|
"generator": optimizer_g,
|
|
"discriminator": optimizer_d,
|
|
},
|
|
criterions={
|
|
"mel": criterion_mel,
|
|
"feat_match": criterion_feat_match,
|
|
"gen_adv": criterion_gen_adv,
|
|
"dis_adv": criterion_dis_adv,
|
|
"var": criterion_var,
|
|
"forwardsum": criterion_forwardsum,
|
|
},
|
|
schedulers={
|
|
"generator": lr_schedule_g,
|
|
"discriminator": lr_schedule_d,
|
|
},
|
|
dataloader=train_dataloader,
|
|
lambda_adv=config.lambda_adv,
|
|
lambda_mel=config.lambda_mel,
|
|
lambda_feat_match=config.lambda_feat_match,
|
|
lambda_var=config.lambda_var,
|
|
lambda_align=config.lambda_align,
|
|
generator_first=config.generator_first,
|
|
use_alignment_module=config.use_alignment_module,
|
|
output_dir=output_dir)
|
|
|
|
evaluator = JETSEvaluator(
|
|
model=model,
|
|
criterions={
|
|
"mel": criterion_mel,
|
|
"feat_match": criterion_feat_match,
|
|
"gen_adv": criterion_gen_adv,
|
|
"dis_adv": criterion_dis_adv,
|
|
"var": criterion_var,
|
|
"forwardsum": criterion_forwardsum,
|
|
},
|
|
dataloader=dev_dataloader,
|
|
lambda_adv=config.lambda_adv,
|
|
lambda_mel=config.lambda_mel,
|
|
lambda_feat_match=config.lambda_feat_match,
|
|
lambda_var=config.lambda_var,
|
|
lambda_align=config.lambda_align,
|
|
generator_first=config.generator_first,
|
|
use_alignment_module=config.use_alignment_module,
|
|
output_dir=output_dir)
|
|
|
|
trainer = Trainer(
|
|
updater,
|
|
stop_trigger=(config.train_max_steps, "iteration"),
|
|
out=output_dir)
|
|
|
|
if dist.get_rank() == 0:
|
|
trainer.extend(
|
|
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
|
|
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
|
|
trainer.extend(
|
|
Snapshot(max_size=config.num_snapshots),
|
|
trigger=(config.save_interval_steps, 'iteration'))
|
|
|
|
print("Trainer Done!")
|
|
trainer.run()
|
|
|
|
|
|
def main():
|
|
# parse args and config and redirect to train_sp
|
|
|
|
parser = argparse.ArgumentParser(description="Train a JETS model.")
|
|
parser.add_argument("--config", type=str, help="JETS config file")
|
|
parser.add_argument("--train-metadata", type=str, help="training data.")
|
|
parser.add_argument("--dev-metadata", type=str, help="dev data.")
|
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
parser.add_argument(
|
|
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--speaker-dict",
|
|
type=str,
|
|
default=None,
|
|
help="speaker id map file for multiple speaker model.")
|
|
|
|
parser.add_argument(
|
|
"--voice-cloning",
|
|
type=str2bool,
|
|
default=False,
|
|
help="whether training voice cloning model.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
with open(args.config, 'rt') as f:
|
|
config = CfgNode(yaml.safe_load(f))
|
|
|
|
print("========Args========")
|
|
print(yaml.safe_dump(vars(args)))
|
|
print("========Config========")
|
|
print(config)
|
|
print(
|
|
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
|
)
|
|
|
|
# dispatch
|
|
if args.ngpu > 1:
|
|
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
|
else:
|
|
train_sp(args, config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|