You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/jets/train.py

306 lines
10 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import shutil
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import yaml
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.optimizer import AdamW
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import jets_multi_spk_batch_fn
from paddlespeech.t2s.datasets.am_batch_fn import jets_single_spk_batch_fn
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.datasets.sampler import ErnieSATSampler
from paddlespeech.t2s.models.jets import JETS
from paddlespeech.t2s.models.jets import JETSEvaluator
from paddlespeech.t2s.models.jets import JETSUpdater
from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
from paddlespeech.t2s.modules.losses import FeatureMatchLoss
from paddlespeech.t2s.modules.losses import ForwardSumLoss
from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
from paddlespeech.t2s.modules.losses import MelSpectrogramLoss
from paddlespeech.t2s.modules.losses import VarianceLoss
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import scheduler_classes
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
from paddlespeech.t2s.utils import str2bool
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
world_size = paddle.distributed.get_world_size()
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
fields = [
"text", "text_lengths", "feats", "feats_lengths", "wave", "durations",
"pitch", "energy"
]
converters = {
"wave": np.load,
"feats": np.load,
"pitch": np.load,
"energy": np.load,
}
spk_num = None
if args.speaker_dict is not None:
print("multiple speaker jets!")
collate_fn = jets_multi_spk_batch_fn
with open(args.speaker_dict, 'rt', encoding='utf-8') as f:
spk_id = [line.strip().split() for line in f.readlines()]
spk_num = len(spk_id)
fields += ["spk_id"]
elif args.voice_cloning:
print("Training voice cloning!")
collate_fn = jets_multi_spk_batch_fn
fields += ["spk_emb"]
converters["spk_emb"] = np.load
else:
print("single speaker jets!")
collate_fn = jets_single_spk_batch_fn
print("spk_num:", spk_num)
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
train_dataset = DataTable(
data=train_metadata,
fields=fields,
converters=converters, )
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
dev_dataset = DataTable(
data=dev_metadata,
fields=fields,
converters=converters, )
# collate function and dataloader
train_sampler = ErnieSATSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=True)
dev_sampler = ErnieSATSampler(
dev_dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=False)
print("samplers done!")
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=collate_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
batch_sampler=dev_sampler,
collate_fn=collate_fn,
num_workers=config.num_workers)
print("dataloaders done!")
with open(args.phones_dict, 'rt', encoding='utf-8') as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_mels
config["model"]["generator_params"]["spks"] = spk_num
model = JETS(idim=vocab_size, odim=odim, **config["model"])
gen_parameters = model.generator.parameters()
dis_parameters = model.discriminator.parameters()
if world_size > 1:
model = DataParallel(model)
gen_parameters = model._layers.generator.parameters()
dis_parameters = model._layers.discriminator.parameters()
print("model done!")
# loss
criterion_mel = MelSpectrogramLoss(
**config["mel_loss_params"], )
criterion_feat_match = FeatureMatchLoss(
**config["feat_match_loss_params"], )
criterion_gen_adv = GeneratorAdversarialLoss(
**config["generator_adv_loss_params"], )
criterion_dis_adv = DiscriminatorAdversarialLoss(
**config["discriminator_adv_loss_params"], )
criterion_var = VarianceLoss()
criterion_forwardsum = ForwardSumLoss()
print("criterions done!")
lr_schedule_g = scheduler_classes[config["generator_scheduler"]](
**config["generator_scheduler_params"])
optimizer_g = AdamW(
learning_rate=lr_schedule_g,
parameters=gen_parameters,
**config["generator_optimizer_params"])
lr_schedule_d = scheduler_classes[config["discriminator_scheduler"]](
**config["discriminator_scheduler_params"])
optimizer_d = AdamW(
learning_rate=lr_schedule_d,
parameters=dis_parameters,
**config["discriminator_optimizer_params"])
print("optimizers done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = JETSUpdater(
model=model,
optimizers={
"generator": optimizer_g,
"discriminator": optimizer_d,
},
criterions={
"mel": criterion_mel,
"feat_match": criterion_feat_match,
"gen_adv": criterion_gen_adv,
"dis_adv": criterion_dis_adv,
"var": criterion_var,
"forwardsum": criterion_forwardsum,
},
schedulers={
"generator": lr_schedule_g,
"discriminator": lr_schedule_d,
},
dataloader=train_dataloader,
lambda_adv=config.lambda_adv,
lambda_mel=config.lambda_mel,
lambda_feat_match=config.lambda_feat_match,
lambda_var=config.lambda_var,
lambda_align=config.lambda_align,
generator_first=config.generator_first,
use_alignment_module=config.use_alignment_module,
output_dir=output_dir)
evaluator = JETSEvaluator(
model=model,
criterions={
"mel": criterion_mel,
"feat_match": criterion_feat_match,
"gen_adv": criterion_gen_adv,
"dis_adv": criterion_dis_adv,
"var": criterion_var,
"forwardsum": criterion_forwardsum,
},
dataloader=dev_dataloader,
lambda_adv=config.lambda_adv,
lambda_mel=config.lambda_mel,
lambda_feat_match=config.lambda_feat_match,
lambda_var=config.lambda_var,
lambda_align=config.lambda_align,
generator_first=config.generator_first,
use_alignment_module=config.use_alignment_module,
output_dir=output_dir)
trainer = Trainer(
updater,
stop_trigger=(config.train_max_steps, "iteration"),
out=output_dir)
if dist.get_rank() == 0:
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print("Trainer Done!")
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a JETS model.")
parser.add_argument("--config", type=str, help="JETS config file")
parser.add_argument("--train-metadata", type=str, help="training data.")
parser.add_argument("--dev-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--speaker-dict",
type=str,
default=None,
help="speaker id map file for multiple speaker model.")
parser.add_argument(
"--voice-cloning",
type=str2bool,
default=False,
help="whether training voice cloning model.")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
else:
train_sp(args, config)
if __name__ == "__main__":
main()