You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/librispeech/asr5/local/data.sh

110 lines
2.9 KiB

#!/bin/bash
stage=-1
stop_stage=100
unit_type=char
dict_dir=data/lang_char
source ${MAIN_ROOT}/utils/parse_options.sh
mkdir -p data
mkdir -p ${dict_dir}
TARGET_DIR=${MAIN_ROOT}/dataset
mkdir -p ${TARGET_DIR}
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
# download data, generate manifests
python3 ${TARGET_DIR}/librispeech/librispeech.py \
--manifest_prefix="data/manifest" \
--target_dir="${TARGET_DIR}/librispeech" \
--full_download="False"
if [ $? -ne 0 ]; then
echo "Prepare LibriSpeech failed. Terminated."
exit 1
fi
for set in train-clean-100 dev-clean test-clean; do
mv data/manifest.${set} data/manifest.${set}.raw
done
rm -rf data/manifest.train.raw data/manifest.dev.raw data/manifest.test.raw
for set in train-clean-100; do
cat data/manifest.${set}.raw >> data/manifest.train.raw
done
for set in dev-clean; do
cat data/manifest.${set}.raw >> data/manifest.dev.raw
done
for set in test-clean; do
cat data/manifest.${set}.raw >> data/manifest.test.raw
done
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# compute mean and stddev for normalizer
num_workers=$(nproc)
python ${MAIN_ROOT}/utils/compute_mean_std.py \
--manifest_path="data/manifest.train.raw" \
--num_samples=2000 \
--spectrum_type="fbank" \
--feat_dim=161 \
--delta_delta=false \
--sample_rate=16000 \
--stride_ms=10 \
--window_ms=25 \
--use_dB_normalization=False \
--num_workers=${num_workers} \
--output_path="data/mean_std.json"
if [ $? -ne 0 ]; then
echo "Compute mean and stddev failed. Terminated."
exit 1
fi
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# build vocabulary
python3 ${MAIN_ROOT}/utils/build_vocab.py \
--unit_type ${unit_type} \
--count_threshold=0 \
--vocab_path="${dict_dir}/vocab.txt" \
--manifest_paths="data/manifest.train.raw"
if [ $? -ne 0 ]; then
echo "Build vocabulary failed. Terminated."
exit 1
fi
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# format manifest with tokenids, vocab size
for set in train dev test dev-clean test-clean; do
{
python3 ${MAIN_ROOT}/utils/format_data.py \
--cmvn_path "data/mean_std.json" \
--unit_type ${unit_type} \
--vocab_path="${dict_dir}/vocab.txt" \
--manifest_path="data/manifest.${set}.raw" \
--output_path="data/manifest.${set}"
if [ $? -ne 0 ]; then
echo "Formt manifest.${set} failed. Terminated."
exit 1
fi
}&
done
wait
fi
echo "LibriSpeech Data preparation done."
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
mkdir -p exp/wavlm
echo "Pretrained wavlm model download"
wget -P exp/wavlm https://paddlespeech.bj.bcebos.com/wavlm/wavlm-base-plus.pdparams
fi
exit 0