You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/decoders/recog.py

196 lines
6.8 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reference espnet Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""V2 backend for `asr_recog.py` using py:class:`decoders.beam_search.BeamSearch`."""
import jsonlines
import paddle
from yacs.config import CfgNode
from .beam_search import BatchBeamSearch
from .beam_search import BeamSearch
from .scorers.length_bonus import LengthBonus
from .scorers.scorer_interface import BatchScorerInterface
from .utils import add_results_to_json
from paddlespeech.s2t.exps import dynamic_import_tester
from paddlespeech.s2t.io.reader import LoadInputsAndTargets
from paddlespeech.s2t.models.asr_interface import ASRInterface
from paddlespeech.s2t.models.lm_interface import dynamic_import_lm
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
# NOTE: you need this func to generate our sphinx doc
def get_config(config_path):
confs = CfgNode(new_allowed=True)
confs.merge_from_file(config_path)
return confs
def load_trained_model(args):
confs = get_config(args.model_conf)
class_obj = dynamic_import_tester(args.model_name)
exp = class_obj(confs, args)
with exp.eval():
exp.setup()
exp.restore()
char_list = exp.args.char_list
model = exp.model
return model, char_list, exp, confs
def load_trained_lm(args):
lm_args = get_config(args.rnnlm_conf)
lm_model_module = lm_args.model_module
lm_class = dynamic_import_lm(lm_model_module)
lm = lm_class(**lm_args.model)
model_dict = paddle.load(args.rnnlm)
lm.set_state_dict(model_dict)
return lm
def recog_v2(args):
"""Decode with custom models that implements ScorerInterface.
Args:
args (namespace): The program arguments.
See py:func:`bin.asr_recog.get_parser` for details
"""
logger.warning("experimental API for custom LMs is selected by --api v2")
if args.batchsize > 1:
raise NotImplementedError("multi-utt batch decoding is not implemented")
if args.streaming_mode is not None:
raise NotImplementedError("streaming mode is not implemented")
if args.word_rnnlm:
raise NotImplementedError("word LM is not implemented")
# set_deterministic(args)
model, char_list, exp, confs = load_trained_model(args)
assert isinstance(model, ASRInterface)
load_inputs_and_targets = LoadInputsAndTargets(
mode="asr",
load_output=False,
sort_in_input_length=False,
preprocess_conf=confs.preprocess_config
if args.preprocess_conf is None else args.preprocess_conf,
preprocess_args={"train": False}, )
if args.rnnlm:
lm = load_trained_lm(args)
lm.eval()
else:
lm = None
if args.ngram_model:
from .scorers.ngram import NgramFullScorer
from .scorers.ngram import NgramPartScorer
if args.ngram_scorer == "full":
ngram = NgramFullScorer(args.ngram_model, char_list)
else:
ngram = NgramPartScorer(args.ngram_model, char_list)
else:
ngram = None
scorers = model.scorers() # decoder
scorers["lm"] = lm
scorers["ngram"] = ngram
scorers["length_bonus"] = LengthBonus(len(char_list))
weights = dict(
decoder=1.0 - args.ctc_weight,
ctc=args.ctc_weight,
lm=args.lm_weight,
ngram=args.ngram_weight,
length_bonus=args.penalty, )
beam_search = BeamSearch(
beam_size=args.beam_size,
vocab_size=len(char_list),
weights=weights,
scorers=scorers,
sos=model.sos,
eos=model.eos,
token_list=char_list,
pre_beam_score_key=None if args.ctc_weight == 1.0 else "full", )
# TODO(karita): make all scorers batchfied
if args.batchsize == 1:
non_batch = [
k for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logger.info("BatchBeamSearch implementation is selected.")
else:
logger.warning(f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation.")
if args.ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
if args.ngpu == 1:
device = "gpu:0"
else:
device = "cpu"
paddle.set_device(device)
dtype = getattr(paddle, args.dtype)
logger.info(f"Decoding device={device}, dtype={dtype}")
model.to(device=device, dtype=dtype)
model.eval()
beam_search.to(device=device, dtype=dtype)
beam_search.eval()
# read json data
js = []
with jsonlines.open(args.recog_json, "r") as reader:
for item in reader:
js.append(item)
# jsonlines to dict, key by 'utt', value by jsonline
js = {item['utt']: item for item in js}
new_js = {}
with paddle.no_grad():
with jsonlines.open(args.result_label, "w") as f:
for idx, name in enumerate(js.keys(), 1):
logger.info(f"({idx}/{len(js.keys())}) decoding " + name)
batch = [(name, js[name])]
feat = load_inputs_and_targets(batch)[0][0]
logger.info(f'feat: {feat.shape}')
enc = model.encode(paddle.to_tensor(feat).to(dtype))
logger.info(f'eout: {enc.shape}')
nbest_hyps = beam_search(
x=enc,
maxlenratio=args.maxlenratio,
minlenratio=args.minlenratio)
nbest_hyps = [
h.asdict()
for h in nbest_hyps[:min(len(nbest_hyps), args.nbest)]
]
new_js[name] = add_results_to_json(js[name], nbest_hyps,
char_list)
item = new_js[name]['output'][0] # 1-best
ref = item['text']
rec_text = item['rec_text'].replace('', ' ').replace(
'<eos>', '').strip()
rec_tokenid = list(map(int, item['rec_tokenid'].split()))
f.write({
"utt": name,
"refs": [ref],
"hyps": [rec_text],
"hyps_tokenid": [rec_tokenid],
})