You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.9 KiB
227 lines
7.9 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from typing import List
|
|
|
|
import uvicorn
|
|
from fastapi import FastAPI
|
|
from prettytable import PrettyTable
|
|
|
|
from ..executor import BaseExecutor
|
|
from ..util import cli_server_register
|
|
from ..util import stats_wrapper
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.server.engine.engine_pool import init_engine_pool
|
|
from paddlespeech.server.restful.api import setup_router
|
|
from paddlespeech.server.utils.config import get_config
|
|
|
|
__all__ = ['ServerExecutor', 'ServerStatsExecutor']
|
|
|
|
app = FastAPI(
|
|
title="PaddleSpeech Serving API", description="Api", version="0.0.1")
|
|
|
|
|
|
@cli_server_register(
|
|
name='paddlespeech_server.start', description='Start the service')
|
|
class ServerExecutor(BaseExecutor):
|
|
def __init__(self):
|
|
super(ServerExecutor, self).__init__()
|
|
self.parser = argparse.ArgumentParser(
|
|
prog='paddlespeech_server.start', add_help=True)
|
|
self.parser.add_argument(
|
|
"--config_file",
|
|
action="store",
|
|
help="yaml file of the app",
|
|
default=None,
|
|
required=True)
|
|
|
|
self.parser.add_argument(
|
|
"--log_file",
|
|
action="store",
|
|
help="log file",
|
|
default="./log/paddlespeech.log")
|
|
|
|
def init(self, config) -> bool:
|
|
"""system initialization
|
|
|
|
Args:
|
|
config (CfgNode): config object
|
|
|
|
Returns:
|
|
bool:
|
|
"""
|
|
# init api
|
|
api_list = list(config.engine_backend)
|
|
api_router = setup_router(api_list)
|
|
app.include_router(api_router)
|
|
|
|
if not init_engine_pool(config):
|
|
return False
|
|
|
|
return True
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
args = self.parser.parse_args(argv)
|
|
config = get_config(args.config_file)
|
|
|
|
if self.init(config):
|
|
uvicorn.run(app, host=config.host, port=config.port, debug=True)
|
|
|
|
@stats_wrapper
|
|
def __call__(self,
|
|
config_file: str="./conf/application.yaml",
|
|
log_file: str="./log/paddlespeech.log"):
|
|
"""
|
|
Python API to call an executor.
|
|
"""
|
|
config = get_config(config_file)
|
|
if self.init(config):
|
|
uvicorn.run(app, host=config.host, port=config.port, debug=True)
|
|
|
|
|
|
@cli_server_register(
|
|
name='paddlespeech_server.stats',
|
|
description='Get the models supported by each speech task in the service.')
|
|
class ServerStatsExecutor():
|
|
def __init__(self):
|
|
super(ServerStatsExecutor, self).__init__()
|
|
|
|
self.parser = argparse.ArgumentParser(
|
|
prog='paddlespeech_server.stats', add_help=True)
|
|
self.parser.add_argument(
|
|
'--task',
|
|
type=str,
|
|
default=None,
|
|
choices=['asr', 'tts'],
|
|
help='Choose speech task.',
|
|
required=True)
|
|
self.task_choices = ['asr', 'tts']
|
|
self.model_name_format = {
|
|
'asr': 'Model-Language-Sample Rate',
|
|
'tts': 'Model-Language'
|
|
}
|
|
|
|
def show_support_models(self, pretrained_models: dict):
|
|
fields = self.model_name_format[self.task].split("-")
|
|
table = PrettyTable(fields)
|
|
for key in pretrained_models:
|
|
table.add_row(key.split("-"))
|
|
print(table)
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
"""
|
|
Command line entry.
|
|
"""
|
|
parser_args = self.parser.parse_args(argv)
|
|
self.task = parser_args.task
|
|
if self.task not in self.task_choices:
|
|
logger.error(
|
|
"Please input correct speech task, choices = ['asr', 'tts']")
|
|
return False
|
|
|
|
elif self.task == 'asr':
|
|
try:
|
|
from paddlespeech.cli.asr.infer import pretrained_models
|
|
logger.info(
|
|
"Here is the table of ASR pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
# show ASR static pretrained model
|
|
from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models
|
|
logger.info(
|
|
"Here is the table of ASR static pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
return True
|
|
except BaseException:
|
|
logger.error(
|
|
"Failed to get the table of ASR pretrained models supported in the service."
|
|
)
|
|
return False
|
|
|
|
elif self.task == 'tts':
|
|
try:
|
|
from paddlespeech.cli.tts.infer import pretrained_models
|
|
logger.info(
|
|
"Here is the table of TTS pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
# show TTS static pretrained model
|
|
from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models
|
|
logger.info(
|
|
"Here is the table of TTS static pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
return True
|
|
except BaseException:
|
|
logger.error(
|
|
"Failed to get the table of TTS pretrained models supported in the service."
|
|
)
|
|
return False
|
|
|
|
@stats_wrapper
|
|
def __call__(
|
|
self,
|
|
task: str=None, ):
|
|
"""
|
|
Python API to call an executor.
|
|
"""
|
|
self.task = task
|
|
if self.task not in self.task_choices:
|
|
print("Please input correct speech task, choices = ['asr', 'tts']")
|
|
|
|
elif self.task == 'asr':
|
|
try:
|
|
from paddlespeech.cli.asr.infer import pretrained_models
|
|
print(
|
|
"Here is the table of ASR pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
# show ASR static pretrained model
|
|
from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models
|
|
print(
|
|
"Here is the table of ASR static pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
print(
|
|
"Failed to get the table of ASR pretrained models supported in the service."
|
|
)
|
|
|
|
elif self.task == 'tts':
|
|
try:
|
|
from paddlespeech.cli.tts.infer import pretrained_models
|
|
print(
|
|
"Here is the table of TTS pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
# show TTS static pretrained model
|
|
from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models
|
|
print(
|
|
"Here is the table of TTS static pretrained models supported in the service."
|
|
)
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
print(
|
|
"Failed to get the table of TTS pretrained models supported in the service."
|
|
)
|