You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddleaudio/paddleaudio/functional/functional.py

266 lines
9.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from librosa(https://github.com/librosa/librosa)
import math
from typing import Optional
from typing import Union
import paddle
__all__ = [
'hz_to_mel',
'mel_to_hz',
'mel_frequencies',
'fft_frequencies',
'compute_fbank_matrix',
'power_to_db',
'create_dct',
]
def hz_to_mel(freq: Union[paddle.Tensor, float],
htk: bool=False) -> Union[paddle.Tensor, float]:
"""Convert Hz to Mels.
Parameters:
freq: the input tensor of arbitrary shape, or a single floating point number.
htk: use HTK formula to do the conversion.
The default value is False.
Returns:
The frequencies represented in Mel-scale.
"""
if htk:
if isinstance(freq, paddle.Tensor):
return 2595.0 * paddle.log10(1.0 + freq / 700.0)
else:
return 2595.0 * math.log10(1.0 + freq / 700.0)
# Fill in the linear part
f_min = 0.0
f_sp = 200.0 / 3
mels = (freq - f_min) / f_sp
# Fill in the log-scale part
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = math.log(6.4) / 27.0 # step size for log region
if isinstance(freq, paddle.Tensor):
target = min_log_mel + paddle.log(
freq / min_log_hz + 1e-10) / logstep # prevent nan with 1e-10
mask = (freq > min_log_hz).astype(freq.dtype)
mels = target * mask + mels * (
1 - mask) # will replace by masked_fill OP in future
else:
if freq >= min_log_hz:
mels = min_log_mel + math.log(freq / min_log_hz + 1e-10) / logstep
return mels
def mel_to_hz(mel: Union[float, paddle.Tensor],
htk: bool=False) -> Union[float, paddle.Tensor]:
"""Convert mel bin numbers to frequencies.
Parameters:
mel: the mel frequency represented as a tensor of arbitrary shape, or a floating point number.
htk: use HTK formula to do the conversion.
Returns:
The frequencies represented in hz.
"""
if htk:
return 700.0 * (10.0**(mel / 2595.0) - 1.0)
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mel
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = math.log(6.4) / 27.0 # step size for log region
if isinstance(mel, paddle.Tensor):
target = min_log_hz * paddle.exp(logstep * (mel - min_log_mel))
mask = (mel > min_log_mel).astype(mel.dtype)
freqs = target * mask + freqs * (
1 - mask) # will replace by masked_fill OP in future
else:
if mel >= min_log_mel:
freqs = min_log_hz * math.exp(logstep * (mel - min_log_mel))
return freqs
def mel_frequencies(n_mels: int=64,
f_min: float=0.0,
f_max: float=11025.0,
htk: bool=False,
dtype: str=paddle.float32):
"""Compute mel frequencies.
Parameters:
n_mels(int): number of Mel bins.
f_min(float): the lower cut-off frequency, below which the filter response is zero.
f_max(float): the upper cut-off frequency, above which the filter response is zero.
htk(bool): whether to use htk formula.
dtype(str): the datatype of the return frequencies.
Returns:
The frequencies represented in Mel-scale
"""
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = hz_to_mel(f_min, htk=htk)
max_mel = hz_to_mel(f_max, htk=htk)
mels = paddle.linspace(min_mel, max_mel, n_mels, dtype=dtype)
freqs = mel_to_hz(mels, htk=htk)
return freqs
def fft_frequencies(sr: int, n_fft: int, dtype: str=paddle.float32):
"""Compute fourier frequencies.
Parameters:
sr(int): the audio sample rate.
n_fft(float): the number of fft bins.
dtype(str): the datatype of the return frequencies.
Returns:
The frequencies represented in hz.
"""
return paddle.linspace(0, float(sr) / 2, int(1 + n_fft // 2), dtype=dtype)
def compute_fbank_matrix(sr: int,
n_fft: int,
n_mels: int=64,
f_min: float=0.0,
f_max: Optional[float]=None,
htk: bool=False,
norm: Union[str, float]='slaney',
dtype: str=paddle.float32):
"""Compute fbank matrix.
Parameters:
sr(int): the audio sample rate.
n_fft(int): the number of fft bins.
n_mels(int): the number of Mel bins.
f_min(float): the lower cut-off frequency, below which the filter response is zero.
f_max(float): the upper cut-off frequency, above which the filter response is zero.
htk: whether to use htk formula.
return_complex(bool): whether to return complex matrix. If True, the matrix will
be complex type. Otherwise, the real and image part will be stored in the last
axis of returned tensor.
dtype(str): the datatype of the returned fbank matrix.
Returns:
The fbank matrix of shape (n_mels, int(1+n_fft//2)).
Shape:
output: (n_mels, int(1+n_fft//2))
"""
if f_max is None:
f_max = float(sr) / 2
# Initialize the weights
weights = paddle.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
# Center freqs of each FFT bin
fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft, dtype=dtype)
# 'Center freqs' of mel bands - uniformly spaced between limits
mel_f = mel_frequencies(
n_mels + 2, f_min=f_min, f_max=f_max, htk=htk, dtype=dtype)
fdiff = mel_f[1:] - mel_f[:-1] #np.diff(mel_f)
ramps = mel_f.unsqueeze(1) - fftfreqs.unsqueeze(0)
#ramps = np.subtract.outer(mel_f, fftfreqs)
for i in range(n_mels):
# lower and upper slopes for all bins
lower = -ramps[i] / fdiff[i]
upper = ramps[i + 2] / fdiff[i + 1]
# .. then intersect them with each other and zero
weights[i] = paddle.maximum(
paddle.zeros_like(lower), paddle.minimum(lower, upper))
# Slaney-style mel is scaled to be approx constant energy per channel
if norm == 'slaney':
enorm = 2.0 / (mel_f[2:n_mels + 2] - mel_f[:n_mels])
weights *= enorm.unsqueeze(1)
elif isinstance(norm, int) or isinstance(norm, float):
weights = paddle.nn.functional.normalize(weights, p=norm, axis=-1)
return weights
def power_to_db(magnitude: paddle.Tensor,
ref_value: float=1.0,
amin: float=1e-10,
top_db: Optional[float]=None) -> paddle.Tensor:
"""Convert a power spectrogram (amplitude squared) to decibel (dB) units.
The function computes the scaling ``10 * log10(x / ref)`` in a numerically
stable way.
Parameters:
magnitude(Tensor): the input magnitude tensor of any shape.
ref_value(float): the reference value. If smaller than 1.0, the db level
of the signal will be pulled up accordingly. Otherwise, the db level
is pushed down.
amin(float): the minimum value of input magnitude, below which the input
magnitude is clipped(to amin).
top_db(float): the maximum db value of resulting spectrum, above which the
spectrum is clipped(to top_db).
Returns:
The spectrogram in log-scale.
shape:
input: any shape
output: same as input
"""
if amin <= 0:
raise Exception("amin must be strictly positive")
if ref_value <= 0:
raise Exception("ref_value must be strictly positive")
ones = paddle.ones_like(magnitude)
log_spec = 10.0 * paddle.log10(paddle.maximum(ones * amin, magnitude))
log_spec -= 10.0 * math.log10(max(ref_value, amin))
if top_db is not None:
if top_db < 0:
raise Exception("top_db must be non-negative")
log_spec = paddle.maximum(log_spec, ones * (log_spec.max() - top_db))
return log_spec
def create_dct(n_mfcc: int,
n_mels: int,
norm: Optional[str]='ortho',
dtype: Optional[str]=paddle.float32) -> paddle.Tensor:
"""Create a discrete cosine transform(DCT) matrix.
Parameters:
n_mfcc (int): Number of mel frequency cepstral coefficients.
n_mels (int): Number of mel filterbanks.
norm (str, optional): Normalizaiton type. Defaults to 'ortho'.
Returns:
Tensor: The DCT matrix with shape (n_mels, n_mfcc).
"""
n = paddle.arange(n_mels, dtype=dtype)
k = paddle.arange(n_mfcc, dtype=dtype).unsqueeze(1)
dct = paddle.cos(math.pi / float(n_mels) * (n + 0.5) *
k) # size (n_mfcc, n_mels)
if norm is None:
dct *= 2.0
else:
assert norm == "ortho"
dct[0] *= 1.0 / math.sqrt(2.0)
dct *= math.sqrt(2.0 / float(n_mels))
return dct.T