You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
584 lines
24 KiB
584 lines
24 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from paddlespeech.s2t.utils.utility import log_add
|
|
from typing import Optional
|
|
from collections import defaultdict
|
|
import numpy as np
|
|
import paddle
|
|
from numpy import float32
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.cli.asr.infer import ASRExecutor
|
|
from paddlespeech.cli.asr.infer import model_alias
|
|
from paddlespeech.cli.asr.infer import pretrained_models
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.cli.utils import download_and_decompress
|
|
from paddlespeech.cli.utils import MODEL_HOME
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
from paddlespeech.s2t.frontend.speech import SpeechSegment
|
|
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
|
from paddlespeech.s2t.modules.mask import mask_finished_preds
|
|
from paddlespeech.s2t.modules.mask import mask_finished_scores
|
|
from paddlespeech.s2t.modules.mask import subsequent_mask
|
|
from paddlespeech.s2t.transform.transformation import Transformation
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
from paddlespeech.server.utils.audio_process import pcm2float
|
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
|
|
|
__all__ = ['ASREngine']
|
|
|
|
pretrained_models = {
|
|
"deepspeech2online_aishell-zh-16k": {
|
|
'url':
|
|
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz',
|
|
'md5':
|
|
'23e16c69730a1cb5d735c98c83c21e16',
|
|
'cfg_path':
|
|
'model.yaml',
|
|
'ckpt_path':
|
|
'exp/deepspeech2_online/checkpoints/avg_1',
|
|
'model':
|
|
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel',
|
|
'params':
|
|
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdiparams',
|
|
'lm_url':
|
|
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
|
|
'lm_md5':
|
|
'29e02312deb2e59b3c8686c7966d4fe3'
|
|
},
|
|
"conformer2online_aishell-zh-16k": {
|
|
'url':
|
|
'https://paddlespeech.bj.bcebos.com/s2t/multi_cn/asr1/asr1_chunk_conformer_multi_cn_ckpt_0.2.0.model.tar.gz',
|
|
'md5':
|
|
'7989b3248c898070904cf042fd656003',
|
|
'cfg_path':
|
|
'model.yaml',
|
|
'ckpt_path':
|
|
'exp/chunk_conformer/checkpoints/multi_cn',
|
|
'model':
|
|
'exp/chunk_conformer/checkpoints/multi_cn.pdparams',
|
|
'params':
|
|
'exp/chunk_conformer/checkpoints/multi_cn.pdparams',
|
|
'lm_url':
|
|
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
|
|
'lm_md5':
|
|
'29e02312deb2e59b3c8686c7966d4fe3'
|
|
},
|
|
}
|
|
|
|
|
|
class ASRServerExecutor(ASRExecutor):
|
|
def __init__(self):
|
|
super().__init__()
|
|
pass
|
|
|
|
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
|
"""
|
|
Download and returns pretrained resources path of current task.
|
|
"""
|
|
support_models = list(pretrained_models.keys())
|
|
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
|
|
tag, '\n\t\t'.join(support_models))
|
|
|
|
res_path = os.path.join(MODEL_HOME, tag)
|
|
decompressed_path = download_and_decompress(pretrained_models[tag],
|
|
res_path)
|
|
decompressed_path = os.path.abspath(decompressed_path)
|
|
logger.info(
|
|
'Use pretrained model stored in: {}'.format(decompressed_path))
|
|
|
|
return decompressed_path
|
|
|
|
def _init_from_path(self,
|
|
model_type: str='wenetspeech',
|
|
am_model: Optional[os.PathLike]=None,
|
|
am_params: Optional[os.PathLike]=None,
|
|
lang: str='zh',
|
|
sample_rate: int=16000,
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
decode_method: str='attention_rescoring',
|
|
am_predictor_conf: dict=None):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
self.model_type = model_type
|
|
self.sample_rate = sample_rate
|
|
if cfg_path is None or am_model is None or am_params is None:
|
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
|
tag = model_type + '-' + lang + '-' + sample_rate_str
|
|
logger.info(f"Load the pretrained model, tag = {tag}")
|
|
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
|
self.res_path = res_path
|
|
self.cfg_path = "/home/users/xiongxinlei/task/paddlespeech-develop/PaddleSpeech/examples/aishell/asr1/model.yaml"
|
|
# self.cfg_path = os.path.join(res_path,
|
|
# pretrained_models[tag]['cfg_path'])
|
|
|
|
self.am_model = os.path.join(res_path,
|
|
pretrained_models[tag]['model'])
|
|
self.am_params = os.path.join(res_path,
|
|
pretrained_models[tag]['params'])
|
|
logger.info(res_path)
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.am_model = os.path.abspath(am_model)
|
|
self.am_params = os.path.abspath(am_params)
|
|
self.res_path = os.path.dirname(
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
|
logger.info(self.cfg_path)
|
|
logger.info(self.am_model)
|
|
logger.info(self.am_params)
|
|
|
|
#Init body.
|
|
self.config = CfgNode(new_allowed=True)
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
with UpdateConfig(self.config):
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
self.vocab = self.config.vocab_filepath
|
|
self.config.decode.lang_model_path = os.path.join(
|
|
MODEL_HOME, 'language_model',
|
|
self.config.decode.lang_model_path)
|
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=self.config.unit_type, vocab=self.vocab)
|
|
|
|
lm_url = pretrained_models[tag]['lm_url']
|
|
lm_md5 = pretrained_models[tag]['lm_md5']
|
|
logger.info(f"Start to load language model {lm_url}")
|
|
self.download_lm(
|
|
lm_url,
|
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
|
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
|
logger.info("start to create the stream conformer asr engine")
|
|
if self.config.spm_model_prefix:
|
|
self.config.spm_model_prefix = os.path.join(
|
|
self.res_path, self.config.spm_model_prefix)
|
|
self.vocab = self.config.vocab_filepath
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=self.config.unit_type,
|
|
vocab=self.config.vocab_filepath,
|
|
spm_model_prefix=self.config.spm_model_prefix)
|
|
# update the decoding method
|
|
if decode_method:
|
|
self.config.decode.decoding_method = decode_method
|
|
else:
|
|
raise Exception("wrong type")
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
# AM predictor
|
|
logger.info("ASR engine start to init the am predictor")
|
|
self.am_predictor_conf = am_predictor_conf
|
|
self.am_predictor = init_predictor(
|
|
model_file=self.am_model,
|
|
params_file=self.am_params,
|
|
predictor_conf=self.am_predictor_conf)
|
|
|
|
# decoder
|
|
logger.info("ASR engine start to create the ctc decoder instance")
|
|
self.decoder = CTCDecoder(
|
|
odim=self.config.output_dim, # <blank> is in vocab
|
|
enc_n_units=self.config.rnn_layer_size * 2,
|
|
blank_id=self.config.blank_id,
|
|
dropout_rate=0.0,
|
|
reduction=True, # sum
|
|
batch_average=True, # sum / batch_size
|
|
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
|
|
|
|
# init decoder
|
|
logger.info("ASR engine start to init the ctc decoder")
|
|
cfg = self.config.decode
|
|
decode_batch_size = 1 # for online
|
|
self.decoder.init_decoder(
|
|
decode_batch_size, self.text_feature.vocab_list,
|
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
|
cfg.num_proc_bsearch)
|
|
|
|
# init state box
|
|
self.chunk_state_h_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
self.chunk_state_c_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
|
model_name = model_type[:model_type.rindex(
|
|
'_')] # model_type: {model_name}_{dataset}
|
|
logger.info(f"model name: {model_name}")
|
|
model_class = dynamic_import(model_name, model_alias)
|
|
model_conf = self.config
|
|
model = model_class.from_config(model_conf)
|
|
self.model = model
|
|
self.model.eval()
|
|
|
|
# load model
|
|
model_dict = paddle.load(self.am_model)
|
|
self.model.set_state_dict(model_dict)
|
|
logger.info("create the transformer like model success")
|
|
|
|
# update the ctc decoding
|
|
self.searcher = None
|
|
self.transformer_decode_reset()
|
|
|
|
def reset_decoder_and_chunk(self):
|
|
"""reset decoder and chunk state for an new audio
|
|
"""
|
|
if "deepspeech2online" in self.model_type or "deepspeech2offline" in self.model_type:
|
|
self.decoder.reset_decoder(batch_size=1)
|
|
# init state box, for new audio request
|
|
self.chunk_state_h_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
self.chunk_state_c_box = np.zeros(
|
|
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
|
|
dtype=float32)
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type or "wenetspeech" in self.model_type:
|
|
self.transformer_decode_reset()
|
|
|
|
def decode_one_chunk(self, x_chunk, x_chunk_lens, model_type: str):
|
|
"""decode one chunk
|
|
|
|
Args:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
model_type (str): online model type
|
|
|
|
Returns:
|
|
[type]: [description]
|
|
"""
|
|
logger.info("start to decoce chunk by chunk")
|
|
if "deepspeech2online" in model_type:
|
|
input_names = self.am_predictor.get_input_names()
|
|
audio_handle = self.am_predictor.get_input_handle(input_names[0])
|
|
audio_len_handle = self.am_predictor.get_input_handle(
|
|
input_names[1])
|
|
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
|
|
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
|
|
|
|
audio_handle.reshape(x_chunk.shape)
|
|
audio_handle.copy_from_cpu(x_chunk)
|
|
|
|
audio_len_handle.reshape(x_chunk_lens.shape)
|
|
audio_len_handle.copy_from_cpu(x_chunk_lens)
|
|
|
|
h_box_handle.reshape(self.chunk_state_h_box.shape)
|
|
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
|
|
|
|
c_box_handle.reshape(self.chunk_state_c_box.shape)
|
|
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
|
|
|
|
output_names = self.am_predictor.get_output_names()
|
|
output_handle = self.am_predictor.get_output_handle(output_names[0])
|
|
output_lens_handle = self.am_predictor.get_output_handle(
|
|
output_names[1])
|
|
output_state_h_handle = self.am_predictor.get_output_handle(
|
|
output_names[2])
|
|
output_state_c_handle = self.am_predictor.get_output_handle(
|
|
output_names[3])
|
|
|
|
self.am_predictor.run()
|
|
|
|
output_chunk_probs = output_handle.copy_to_cpu()
|
|
output_chunk_lens = output_lens_handle.copy_to_cpu()
|
|
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
|
|
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
|
|
|
|
self.decoder.next(output_chunk_probs, output_chunk_lens)
|
|
trans_best, trans_beam = self.decoder.decode()
|
|
logger.info(f"decode one one best result: {trans_best[0]}")
|
|
return trans_best[0]
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
try:
|
|
logger.info(
|
|
f"we will use the transformer like model : {self.model_type}"
|
|
)
|
|
self.advanced_decoding(x_chunk, x_chunk_lens)
|
|
self.update_result()
|
|
|
|
return self.result_transcripts[0]
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
else:
|
|
raise Exception("invalid model name")
|
|
|
|
def advanced_decoding(self, xs: paddle.Tensor, x_chunk_lens):
|
|
logger.info("start to decode with advanced_decoding method")
|
|
encoder_out, encoder_mask = self.decode_forward(xs)
|
|
self.ctc_prefix_beam_search(xs, encoder_out, encoder_mask)
|
|
|
|
def decode_forward(self, xs):
|
|
logger.info("get the model out from the feat")
|
|
cfg = self.config.decode
|
|
decoding_chunk_size = cfg.decoding_chunk_size
|
|
num_decoding_left_chunks = cfg.num_decoding_left_chunks
|
|
|
|
assert decoding_chunk_size > 0
|
|
subsampling = self.model.encoder.embed.subsampling_rate
|
|
context = self.model.encoder.embed.right_context + 1
|
|
stride = subsampling * decoding_chunk_size
|
|
|
|
# decoding window for model
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
num_frames = xs.shape[1]
|
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
|
|
|
|
|
logger.info("start to do model forward")
|
|
outputs = []
|
|
|
|
# num_frames - context + 1 ensure that current frame can get context window
|
|
for cur in range(0, num_frames - context + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
chunk_xs = xs[:, cur:end, :]
|
|
(y, self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
|
|
chunk_xs, self.offset, required_cache_size,
|
|
self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache)
|
|
outputs.append(y)
|
|
self.offset += y.shape[1]
|
|
|
|
ys = paddle.cat(outputs, 1)
|
|
masks = paddle.ones([1, ys.shape[1]], dtype=paddle.bool)
|
|
masks = masks.unsqueeze(1)
|
|
return ys, masks
|
|
|
|
def transformer_decode_reset(self):
|
|
self.subsampling_cache = None
|
|
self.elayers_output_cache = None
|
|
self.conformer_cnn_cache = None
|
|
self.hyps = None
|
|
self.offset = 0
|
|
self.cur_hyps = None
|
|
self.hyps = None
|
|
|
|
def ctc_prefix_beam_search(self, xs, encoder_out, encoder_mask, blank_id=0):
|
|
# decode
|
|
logger.info("start to ctc prefix search")
|
|
|
|
device = xs.place
|
|
cfg = self.config.decode
|
|
batch_size = xs.shape[0]
|
|
beam_size = cfg.beam_size
|
|
maxlen = encoder_out.shape[1]
|
|
|
|
ctc_probs = self.model.ctc.log_softmax(encoder_out) # (1, maxlen, vocab_size)
|
|
ctc_probs = ctc_probs.squeeze(0)
|
|
|
|
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
|
|
# blank_ending_score and none_blank_ending_score in ln domain
|
|
if self.cur_hyps is None:
|
|
self.cur_hyps = [(tuple(), (0.0, -float('inf')))]
|
|
# 2. CTC beam search step by step
|
|
for t in range(0, maxlen):
|
|
logp = ctc_probs[t] # (vocab_size,)
|
|
# key: prefix, value (pb, pnb), default value(-inf, -inf)
|
|
next_hyps = defaultdict(lambda: (-float('inf'), -float('inf')))
|
|
|
|
# 2.1 First beam prune: select topk best
|
|
# do token passing process
|
|
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
|
|
for s in top_k_index:
|
|
s = s.item()
|
|
ps = logp[s].item()
|
|
for prefix, (pb, pnb) in self.cur_hyps:
|
|
last = prefix[-1] if len(prefix) > 0 else None
|
|
if s == blank_id: # blank
|
|
n_pb, n_pnb = next_hyps[prefix]
|
|
n_pb = log_add([n_pb, pb + ps, pnb + ps])
|
|
next_hyps[prefix] = (n_pb, n_pnb)
|
|
elif s == last:
|
|
# Update *ss -> *s;
|
|
n_pb, n_pnb = next_hyps[prefix]
|
|
n_pnb = log_add([n_pnb, pnb + ps])
|
|
next_hyps[prefix] = (n_pb, n_pnb)
|
|
# Update *s-s -> *ss, - is for blank
|
|
n_prefix = prefix + (s, )
|
|
n_pb, n_pnb = next_hyps[n_prefix]
|
|
n_pnb = log_add([n_pnb, pb + ps])
|
|
next_hyps[n_prefix] = (n_pb, n_pnb)
|
|
else:
|
|
n_prefix = prefix + (s, )
|
|
n_pb, n_pnb = next_hyps[n_prefix]
|
|
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
|
|
next_hyps[n_prefix] = (n_pb, n_pnb)
|
|
|
|
# 2.2 Second beam prune
|
|
next_hyps = sorted(
|
|
next_hyps.items(),
|
|
key=lambda x: log_add(list(x[1])),
|
|
reverse=True)
|
|
self.cur_hyps = next_hyps[:beam_size]
|
|
|
|
hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in self.cur_hyps]
|
|
|
|
self.hyps = [hyps[0][0]]
|
|
logger.info("ctc prefix search success")
|
|
return hyps, encoder_out
|
|
|
|
def update_result(self):
|
|
logger.info("update the final result")
|
|
self.result_transcripts = [
|
|
self.text_feature.defeaturize(hyp) for hyp in self.hyps
|
|
]
|
|
self.result_tokenids = [hyp for hyp in self.hyps]
|
|
|
|
def extract_feat(self, samples, sample_rate):
|
|
"""extract feat
|
|
|
|
Args:
|
|
samples (numpy.array): numpy.float32
|
|
sample_rate (int): sample rate
|
|
|
|
Returns:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
"""
|
|
|
|
if "deepspeech2online" in self.model_type:
|
|
# pcm16 -> pcm 32
|
|
samples = pcm2float(samples)
|
|
# read audio
|
|
speech_segment = SpeechSegment.from_pcm(
|
|
samples, sample_rate, transcript=" ")
|
|
# audio augment
|
|
self.collate_fn_test.augmentation.transform_audio(speech_segment)
|
|
|
|
# extract speech feature
|
|
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
|
|
speech_segment, self.collate_fn_test.keep_transcription_text)
|
|
# CMVN spectrum
|
|
if self.collate_fn_test._normalizer:
|
|
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
|
|
|
|
# spectrum augment
|
|
audio = self.collate_fn_test.augmentation.transform_feature(
|
|
spectrum)
|
|
|
|
audio_len = audio.shape[0]
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
# audio_len = paddle.to_tensor(audio_len)
|
|
audio = paddle.unsqueeze(audio, axis=0)
|
|
|
|
x_chunk = audio.numpy()
|
|
x_chunk_lens = np.array([audio_len])
|
|
|
|
return x_chunk, x_chunk_lens
|
|
elif "conformer2online" in self.model_type:
|
|
|
|
if sample_rate != self.sample_rate:
|
|
logger.info(f"audio sample rate {sample_rate} is not match," \
|
|
"the model sample_rate is {self.sample_rate}")
|
|
logger.info(f"ASR Engine use the {self.model_type} to process")
|
|
logger.info("Create the preprocess instance")
|
|
preprocess_conf = self.config.preprocess_config
|
|
preprocess_args = {"train": False}
|
|
preprocessing = Transformation(preprocess_conf)
|
|
|
|
logger.info("Read the audio file")
|
|
logger.info(f"audio shape: {samples.shape}")
|
|
# fbank
|
|
x_chunk = preprocessing(samples, **preprocess_args)
|
|
x_chunk_lens = paddle.to_tensor(x_chunk.shape[0])
|
|
x_chunk = paddle.to_tensor(
|
|
x_chunk, dtype="float32").unsqueeze(axis=0)
|
|
logger.info(
|
|
f"process the audio feature success, feat shape: {x_chunk.shape}"
|
|
)
|
|
return x_chunk, x_chunk_lens
|
|
|
|
|
|
class ASREngine(BaseEngine):
|
|
"""ASR server engine
|
|
|
|
Args:
|
|
metaclass: Defaults to Singleton.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ASREngine, self).__init__()
|
|
logger.info("create the online asr engine instache")
|
|
|
|
def init(self, config: dict) -> bool:
|
|
"""init engine resource
|
|
|
|
Args:
|
|
config_file (str): config file
|
|
|
|
Returns:
|
|
bool: init failed or success
|
|
"""
|
|
self.input = None
|
|
self.output = ""
|
|
self.executor = ASRServerExecutor()
|
|
self.config = config
|
|
|
|
self.executor._init_from_path(
|
|
model_type=self.config.model_type,
|
|
am_model=self.config.am_model,
|
|
am_params=self.config.am_params,
|
|
lang=self.config.lang,
|
|
sample_rate=self.config.sample_rate,
|
|
cfg_path=self.config.cfg_path,
|
|
decode_method=self.config.decode_method,
|
|
am_predictor_conf=self.config.am_predictor_conf)
|
|
|
|
logger.info("Initialize ASR server engine successfully.")
|
|
return True
|
|
|
|
def preprocess(self,
|
|
samples,
|
|
sample_rate,
|
|
model_type="deepspeech2online_aishell-zh-16k"):
|
|
"""preprocess
|
|
|
|
Args:
|
|
samples (numpy.array): numpy.float32
|
|
sample_rate (int): sample rate
|
|
|
|
Returns:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
"""
|
|
# if "deepspeech" in model_type:
|
|
x_chunk, x_chunk_lens = self.executor.extract_feat(samples, sample_rate)
|
|
return x_chunk, x_chunk_lens
|
|
|
|
def run(self, x_chunk, x_chunk_lens, decoder_chunk_size=1):
|
|
"""run online engine
|
|
|
|
Args:
|
|
x_chunk (numpy.array): shape[B, T, D]
|
|
x_chunk_lens (numpy.array): shape[B]
|
|
decoder_chunk_size(int)
|
|
"""
|
|
self.output = self.executor.decode_one_chunk(x_chunk, x_chunk_lens,
|
|
self.config.model_type)
|
|
|
|
def postprocess(self):
|
|
"""postprocess
|
|
"""
|
|
return self.output
|
|
|
|
def reset(self):
|
|
"""reset engine decoder and inference state
|
|
"""
|
|
self.executor.reset_decoder_and_chunk()
|
|
self.output = ""
|