You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/parakeet/models/fastspeech2/fastspeech2.py

813 lines
31 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fastspeech2 related modules for paddle"""
from typing import Dict
from typing import Sequence
from typing import Tuple
import paddle
import paddle.nn.functional as F
from paddle import nn
from typeguard import check_argument_types
from parakeet.modules.fastspeech2_predictor.duration_predictor import DurationPredictor
from parakeet.modules.fastspeech2_predictor.duration_predictor import DurationPredictorLoss
from parakeet.modules.fastspeech2_predictor.length_regulator import LengthRegulator
from parakeet.modules.fastspeech2_predictor.variance_predictor import VariancePredictor
from parakeet.modules.fastspeech2_transformer.embedding import PositionalEncoding
from parakeet.modules.fastspeech2_transformer.embedding import ScaledPositionalEncoding
from parakeet.modules.fastspeech2_transformer.encoder import Encoder as TransformerEncoder
from parakeet.modules.nets_utils import initialize
from parakeet.modules.nets_utils import make_non_pad_mask
from parakeet.modules.nets_utils import make_pad_mask
from parakeet.modules.tacotron2.decoder import Postnet
class FastSpeech2(nn.Layer):
"""FastSpeech2 module.
This is a module of FastSpeech2 described in `FastSpeech 2: Fast and
High-Quality End-to-End Text to Speech`_. Instead of quantized pitch and
energy, we use token-averaged value introduced in `FastPitch: Parallel
Text-to-speech with Pitch Prediction`_.
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
https://arxiv.org/abs/2006.04558
.. _`FastPitch: Parallel Text-to-speech with Pitch Prediction`:
https://arxiv.org/abs/2006.06873
"""
def __init__(
self,
# network structure related
idim: int,
odim: int,
adim: int=384,
aheads: int=4,
elayers: int=6,
eunits: int=1536,
dlayers: int=6,
dunits: int=1536,
postnet_layers: int=5,
postnet_chans: int=512,
postnet_filts: int=5,
positionwise_layer_type: str="conv1d",
positionwise_conv_kernel_size: int=1,
use_scaled_pos_enc: bool=True,
use_batch_norm: bool=True,
encoder_normalize_before: bool=True,
decoder_normalize_before: bool=True,
encoder_concat_after: bool=False,
decoder_concat_after: bool=False,
reduction_factor: int=1,
encoder_type: str="transformer",
decoder_type: str="transformer",
# duration predictor
duration_predictor_layers: int=2,
duration_predictor_chans: int=384,
duration_predictor_kernel_size: int=3,
# energy predictor
energy_predictor_layers: int=2,
energy_predictor_chans: int=384,
energy_predictor_kernel_size: int=3,
energy_predictor_dropout: float=0.5,
energy_embed_kernel_size: int=9,
energy_embed_dropout: float=0.5,
stop_gradient_from_energy_predictor: bool=False,
# pitch predictor
pitch_predictor_layers: int=2,
pitch_predictor_chans: int=384,
pitch_predictor_kernel_size: int=3,
pitch_predictor_dropout: float=0.5,
pitch_embed_kernel_size: int=9,
pitch_embed_dropout: float=0.5,
stop_gradient_from_pitch_predictor: bool=False,
# spk emb
num_speakers: int=None,
spk_embed_dim: int=None,
spk_embed_integration_type: str="add",
# tone emb
num_tones: int=None,
tone_embed_dim: int=None,
tone_embed_integration_type: str="add",
# training related
transformer_enc_dropout_rate: float=0.1,
transformer_enc_positional_dropout_rate: float=0.1,
transformer_enc_attn_dropout_rate: float=0.1,
transformer_dec_dropout_rate: float=0.1,
transformer_dec_positional_dropout_rate: float=0.1,
transformer_dec_attn_dropout_rate: float=0.1,
duration_predictor_dropout_rate: float=0.1,
postnet_dropout_rate: float=0.5,
init_type: str="xavier_uniform",
init_enc_alpha: float=1.0,
init_dec_alpha: float=1.0,
use_masking: bool=False,
use_weighted_masking: bool=False, ):
"""Initialize FastSpeech2 module."""
assert check_argument_types()
super().__init__()
# store hyperparameters
self.idim = idim
self.odim = odim
self.eos = idim - 1
self.reduction_factor = reduction_factor
self.encoder_type = encoder_type
self.decoder_type = decoder_type
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
self.use_scaled_pos_enc = use_scaled_pos_enc
self.spk_embed_dim = spk_embed_dim
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = spk_embed_integration_type
self.tone_embed_dim = tone_embed_dim
if self.tone_embed_dim is not None:
self.tone_embed_integration_type = tone_embed_integration_type
# use idx 0 as padding idx
self.padding_idx = 0
# initialize parameters
initialize(self, init_type)
if self.spk_embed_dim is not None:
self.spk_embedding_table = nn.Embedding(
num_embeddings=num_speakers,
embedding_dim=self.spk_embed_dim,
padding_idx=self.padding_idx)
if self.tone_embed_dim is not None:
self.tone_embedding_table = nn.Embedding(
num_embeddings=num_tones,
embedding_dim=self.tone_embed_dim,
padding_idx=self.padding_idx)
# get positional encoding class
pos_enc_class = (ScaledPositionalEncoding
if self.use_scaled_pos_enc else PositionalEncoding)
# define encoder
encoder_input_layer = nn.Embedding(
num_embeddings=idim,
embedding_dim=adim,
padding_idx=self.padding_idx)
if encoder_type == "transformer":
self.encoder = TransformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size, )
else:
raise ValueError(f"{encoder_type} is not supported.")
# define additional projection for speaker embedding
if self.spk_embed_dim is not None:
if self.spk_embed_integration_type == "add":
self.spk_projection = nn.Linear(self.spk_embed_dim, adim)
else:
self.spk_projection = nn.Linear(adim + self.spk_embed_dim, adim)
# define additional projection for tone embedding
if self.tone_embed_dim is not None:
if self.tone_embed_integration_type == "add":
self.tone_projection = nn.Linear(self.tone_embed_dim, adim)
else:
self.tone_projection = nn.Linear(adim + self.tone_embed_dim,
adim)
# define duration predictor
self.duration_predictor = DurationPredictor(
idim=adim,
n_layers=duration_predictor_layers,
n_chans=duration_predictor_chans,
kernel_size=duration_predictor_kernel_size,
dropout_rate=duration_predictor_dropout_rate, )
# define pitch predictor
self.pitch_predictor = VariancePredictor(
idim=adim,
n_layers=pitch_predictor_layers,
n_chans=pitch_predictor_chans,
kernel_size=pitch_predictor_kernel_size,
dropout_rate=pitch_predictor_dropout, )
# We use continuous pitch + FastPitch style avg
self.pitch_embed = nn.Sequential(
nn.Conv1D(
in_channels=1,
out_channels=adim,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2, ),
nn.Dropout(pitch_embed_dropout), )
# define energy predictor
self.energy_predictor = VariancePredictor(
idim=adim,
n_layers=energy_predictor_layers,
n_chans=energy_predictor_chans,
kernel_size=energy_predictor_kernel_size,
dropout_rate=energy_predictor_dropout, )
# We use continuous enegy + FastPitch style avg
self.energy_embed = nn.Sequential(
nn.Conv1D(
in_channels=1,
out_channels=adim,
kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2, ),
nn.Dropout(energy_embed_dropout), )
# define length regulator
self.length_regulator = LengthRegulator()
# define decoder
# NOTE: we use encoder as decoder
# because fastspeech's decoder is the same as encoder
if decoder_type == "transformer":
self.decoder = TransformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
# in decoder, don't need layer before pos_enc_class (we use embedding here in encoder)
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size, )
else:
raise ValueError(f"{decoder_type} is not supported.")
# define final projection
self.feat_out = nn.Linear(adim, odim * reduction_factor)
# define postnet
self.postnet = (None if postnet_layers == 0 else Postnet(
idim=idim,
odim=odim,
n_layers=postnet_layers,
n_chans=postnet_chans,
n_filts=postnet_filts,
use_batch_norm=use_batch_norm,
dropout_rate=postnet_dropout_rate, ))
nn.initializer.set_global_initializer(None)
self._reset_parameters(
init_enc_alpha=init_enc_alpha,
init_dec_alpha=init_dec_alpha, )
def forward(
self,
text: paddle.Tensor,
text_lengths: paddle.Tensor,
speech: paddle.Tensor,
speech_lengths: paddle.Tensor,
durations: paddle.Tensor,
pitch: paddle.Tensor,
energy: paddle.Tensor,
tone_id: paddle.Tensor=None,
spembs: paddle.Tensor=None,
spk_id: paddle.Tensor=None
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation.
Parameters
----------
text : Tensor(int64)
Batch of padded token ids (B, Tmax).
text_lengths : Tensor(int64)
Batch of lengths of each input (B,).
speech : Tensor
Batch of padded target features (B, Lmax, odim).
speech_lengths : Tensor(int64)
Batch of the lengths of each target (B,).
durations : Tensor(int64)
Batch of padded durations (B, Tmax).
pitch : Tensor
Batch of padded token-averaged pitch (B, Tmax, 1).
energy : Tensor
Batch of padded token-averaged energy (B, Tmax, 1).
tone_id : Tensor, optional(int64)
Batch of padded tone ids (B, Tmax).
spembs : Tensor, optional
Batch of speaker embeddings (B, spk_embed_dim).
spk_id : Tnesor, optional(int64)
Batch of speaker ids (B,)
Returns
----------
Tensor
mel outs before postnet
Tensor
mel outs after postnet
Tensor
duration predictor's output
Tensor
pitch predictor's output
Tensor
energy predictor's output
Tensor
speech
Tensor
speech_lengths, modified if reduction_factor > 1
"""
# input of embedding must be int64
xs = paddle.cast(text, 'int64')
ilens = paddle.cast(text_lengths, 'int64')
ds = paddle.cast(durations, 'int64')
olens = paddle.cast(speech_lengths, 'int64')
ys = speech
ps = pitch
es = energy
if spk_id is not None:
spk_id = paddle.cast(spk_id, 'int64')
if tone_id is not None:
tone_id = paddle.cast(tone_id, 'int64')
# forward propagation
before_outs, after_outs, d_outs, p_outs, e_outs = self._forward(
xs,
ilens,
olens,
ds,
ps,
es,
is_inference=False,
spembs=spembs,
spk_id=spk_id,
tone_id=tone_id)
# modify mod part of groundtruth
if self.reduction_factor > 1:
olens = paddle.to_tensor(
[olen - olen % self.reduction_factor for olen in olens.numpy()])
max_olen = max(olens)
ys = ys[:, :max_olen]
return before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens
def _forward(self,
xs: paddle.Tensor,
ilens: paddle.Tensor,
olens: paddle.Tensor=None,
ds: paddle.Tensor=None,
ps: paddle.Tensor=None,
es: paddle.Tensor=None,
is_inference: bool=False,
alpha: float=1.0,
spembs=None,
spk_id=None,
tone_id=None) -> Sequence[paddle.Tensor]:
# forward encoder
x_masks = self._source_mask(ilens)
# (B, Tmax, adim)
hs, _ = self.encoder(xs, x_masks)
# integrate speaker embedding
if self.spk_embed_dim is not None:
if spembs is not None:
hs = self._integrate_with_spk_embed(hs, spembs)
elif spk_id is not None:
spembs = self.spk_embedding_table(spk_id)
hs = self._integrate_with_spk_embed(hs, spembs)
# integrate tone embedding
if self.tone_embed_dim is not None:
if tone_id is not None:
tone_embs = self.tone_embedding_table(tone_id)
hs = self._integrate_with_tone_embed(hs, tone_embs)
# forward duration predictor and variance predictors
d_masks = make_pad_mask(ilens)
if self.stop_gradient_from_pitch_predictor:
p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1))
if is_inference:
# (B, Tmax)
d_outs = self.duration_predictor.inference(hs, d_masks)
# use prediction in inference
# (B, Tmax, 1)
p_embs = self.pitch_embed(p_outs.transpose((0, 2, 1))).transpose(
(0, 2, 1))
e_embs = self.energy_embed(e_outs.transpose((0, 2, 1))).transpose(
(0, 2, 1))
hs = hs + e_embs + p_embs
# (B, Lmax, adim)
hs = self.length_regulator(hs, d_outs, alpha)
else:
d_outs = self.duration_predictor(hs, d_masks)
# use groundtruth in training
p_embs = self.pitch_embed(ps.transpose((0, 2, 1))).transpose(
(0, 2, 1))
e_embs = self.energy_embed(es.transpose((0, 2, 1))).transpose(
(0, 2, 1))
hs = hs + e_embs + p_embs
# (B, Lmax, adim)
hs = self.length_regulator(hs, ds)
# forward decoder
if olens is not None and not is_inference:
if self.reduction_factor > 1:
olens_in = paddle.to_tensor(
[olen // self.reduction_factor for olen in olens.numpy()])
else:
olens_in = olens
h_masks = self._source_mask(olens_in)
else:
h_masks = None
# (B, Lmax, adim)
zs, _ = self.decoder(hs, h_masks)
# (B, Lmax, odim)
before_outs = self.feat_out(zs).reshape((zs.shape[0], -1, self.odim))
# postnet -> (B, Lmax//r * r, odim)
if self.postnet is None:
after_outs = before_outs
else:
after_outs = before_outs + self.postnet(
before_outs.transpose((0, 2, 1))).transpose((0, 2, 1))
return before_outs, after_outs, d_outs, p_outs, e_outs
def inference(
self,
text: paddle.Tensor,
speech: paddle.Tensor=None,
durations: paddle.Tensor=None,
pitch: paddle.Tensor=None,
energy: paddle.Tensor=None,
alpha: float=1.0,
use_teacher_forcing: bool=False,
spembs=None,
spk_id=None,
tone_id=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Parameters
----------
text : Tensor(int64)
Input sequence of characters (T,).
speech : Tensor, optional
Feature sequence to extract style (N, idim).
durations : Tensor, optional (int64)
Groundtruth of duration (T,).
pitch : Tensor, optional
Groundtruth of token-averaged pitch (T, 1).
energy : Tensor, optional
Groundtruth of token-averaged energy (T, 1).
alpha : float, optional
Alpha to control the speed.
use_teacher_forcing : bool, optional
Whether to use teacher forcing.
If true, groundtruth of duration, pitch and energy will be used.
spembs : Tensor, optional
peaker embedding vector (spk_embed_dim,).
spk_id : Tensor, optional(int64)
Speaker embedding vector (spk_embed_dim).
tone_id : Tensor, optional(int64)
Batch of padded tone ids (B, Tmax).
Returns
----------
Tensor
Output sequence of features (L, odim).
"""
# input of embedding must be int64
x = paddle.cast(text, 'int64')
y = speech
spemb = spembs
if durations:
d = paddle.cast(durations, 'int64')
p, e = pitch, energy
# setup batch axis
ilens = paddle.to_tensor(
[x.shape[0]], dtype=paddle.int64, place=x.place)
xs, ys = x.unsqueeze(0), None
if y is not None:
ys = y.unsqueeze(0)
if spemb is not None:
spembs = spemb.unsqueeze(0)
else:
spembs = None
if use_teacher_forcing:
# use groundtruth of duration, pitch, and energy
ds, ps, es = d.unsqueeze(0), p.unsqueeze(0), e.unsqueeze(0)
# (1, L, odim)
_, outs, *_ = self._forward(
xs,
ilens,
ys,
ds=ds,
ps=ps,
es=es,
spembs=spembs,
spk_id=spk_id,
tone_id=tone_id)
else:
# (1, L, odim)
_, outs, *_ = self._forward(
xs,
ilens,
ys,
is_inference=True,
alpha=alpha,
spembs=spembs,
spk_id=spk_id,
tone_id=tone_id)
return outs[0]
def _integrate_with_spk_embed(self, hs, spembs):
"""Integrate speaker embedding with hidden states.
Parameters
----------
hs : Tensor
Batch of hidden state sequences (B, Tmax, adim).
spembs : Tensor
Batch of speaker embeddings (B, spk_embed_dim).
Returns
----------
Tensor
Batch of integrated hidden state sequences (B, Tmax, adim)
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spembs = self.spk_projection(F.normalize(spembs))
hs = hs + spembs.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds and then apply projection
spembs = F.normalize(spembs).unsqueeze(1).expand(
shape=[-1, hs.shape[1], -1])
hs = self.spk_projection(paddle.concat([hs, spembs], axis=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _integrate_with_tone_embed(self, hs, tone_embs):
"""Integrate speaker embedding with hidden states.
Parameters
----------
hs : Tensor
Batch of hidden state sequences (B, Tmax, adim).
tone_embs : Tensor
Batch of speaker embeddings (B, Tmax, tone_embed_dim).
Returns
----------
Tensor
Batch of integrated hidden state sequences (B, Tmax, adim)
"""
if self.tone_embed_integration_type == "add":
# apply projection and then add to hidden states
tone_embs = self.tone_projection(F.normalize(tone_embs))
hs = hs + tone_embs
elif self.tone_embed_integration_type == "concat":
# concat hidden states with tone embeds and then apply projection
tone_embs = F.normalize(tone_embs).expand(
shape=[-1, hs.shape[1], -1])
hs = self.tone_projection(paddle.concat([hs, tone_embs], axis=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for self-attention.
Parameters
----------
ilens : Tensor
Batch of lengths (B,).
Returns
-------
Tensor
Mask tensor for self-attention.
dtype=paddle.bool
Examples
-------
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]]) bool
"""
x_masks = make_non_pad_mask(ilens)
return x_masks.unsqueeze(-2)
def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float):
# initialize alpha in scaled positional encoding
if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
init_enc_alpha = paddle.to_tensor(init_enc_alpha)
self.encoder.embed[-1].alpha = paddle.create_parameter(
shape=init_enc_alpha.shape,
dtype=str(init_enc_alpha.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(
init_enc_alpha))
if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
init_dec_alpha = paddle.to_tensor(init_dec_alpha)
self.decoder.embed[-1].alpha = paddle.create_parameter(
shape=init_dec_alpha.shape,
dtype=str(init_dec_alpha.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(
init_dec_alpha))
class FastSpeech2Inference(nn.Layer):
def __init__(self, normalizer, model):
super().__init__()
self.normalizer = normalizer
self.acoustic_model = model
def forward(self, text, spk_id=None):
normalized_mel = self.acoustic_model.inference(text, spk_id=spk_id)
logmel = self.normalizer.inverse(normalized_mel)
return logmel
class FastSpeech2Loss(nn.Layer):
"""Loss function module for FastSpeech2."""
def __init__(self, use_masking: bool=True,
use_weighted_masking: bool=False):
"""Initialize feed-forward Transformer loss module.
Parameters
----------
use_masking : bool
Whether to apply masking for padded part in loss calculation.
use_weighted_masking : bool
Whether to weighted masking in loss calculation.
"""
assert check_argument_types()
super().__init__()
assert (use_masking != use_weighted_masking) or not use_masking
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = nn.L1Loss(reduction=reduction)
self.mse_criterion = nn.MSELoss(reduction=reduction)
self.duration_criterion = DurationPredictorLoss(reduction=reduction)
def forward(
self,
after_outs: paddle.Tensor,
before_outs: paddle.Tensor,
d_outs: paddle.Tensor,
p_outs: paddle.Tensor,
e_outs: paddle.Tensor,
ys: paddle.Tensor,
ds: paddle.Tensor,
ps: paddle.Tensor,
es: paddle.Tensor,
ilens: paddle.Tensor,
olens: paddle.Tensor,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Calculate forward propagation.
Parameters
----------
after_outs : Tensor
Batch of outputs after postnets (B, Lmax, odim).
before_outs : Tensor
Batch of outputs before postnets (B, Lmax, odim).
d_outs : Tensor
Batch of outputs of duration predictor (B, Tmax).
p_outs : Tensor
Batch of outputs of pitch predictor (B, Tmax, 1).
e_outs : Tensor
Batch of outputs of energy predictor (B, Tmax, 1).
ys : Tensor
Batch of target features (B, Lmax, odim).
ds : Tensor
Batch of durations (B, Tmax).
ps : Tensor
Batch of target token-averaged pitch (B, Tmax, 1).
es : Tensor
Batch of target token-averaged energy (B, Tmax, 1).
ilens : Tensor
Batch of the lengths of each input (B,).
olens : Tensor
Batch of the lengths of each target (B,).
Returns
----------
Tensor
L1 loss value.
Tensor
Duration predictor loss value.
Tensor
Pitch predictor loss value.
Tensor
Energy predictor loss value.
"""
# apply mask to remove padded part
if self.use_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
before_outs = before_outs.masked_select(
out_masks.broadcast_to(before_outs.shape))
if after_outs is not None:
after_outs = after_outs.masked_select(
out_masks.broadcast_to(after_outs.shape))
ys = ys.masked_select(out_masks.broadcast_to(ys.shape))
duration_masks = make_non_pad_mask(ilens)
d_outs = d_outs.masked_select(
duration_masks.broadcast_to(d_outs.shape))
ds = ds.masked_select(duration_masks.broadcast_to(ds.shape))
pitch_masks = make_non_pad_mask(ilens).unsqueeze(-1)
p_outs = p_outs.masked_select(
pitch_masks.broadcast_to(p_outs.shape))
e_outs = e_outs.masked_select(
pitch_masks.broadcast_to(e_outs.shape))
ps = ps.masked_select(pitch_masks.broadcast_to(ps.shape))
es = es.masked_select(pitch_masks.broadcast_to(es.shape))
# calculate loss
l1_loss = self.l1_criterion(before_outs, ys)
if after_outs is not None:
l1_loss += self.l1_criterion(after_outs, ys)
duration_loss = self.duration_criterion(d_outs, ds)
pitch_loss = self.mse_criterion(p_outs, ps)
energy_loss = self.mse_criterion(e_outs, es)
# make weighted mask and apply it
if self.use_weighted_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
out_weights = out_masks.cast(dtype=paddle.float32) / out_masks.cast(
dtype=paddle.float32).sum(
axis=1, keepdim=True)
out_weights /= ys.shape[0] * ys.shape[2]
duration_masks = make_non_pad_mask(ilens)
duration_weights = (duration_masks.cast(dtype=paddle.float32) /
duration_masks.cast(dtype=paddle.float32).sum(
axis=1, keepdim=True))
duration_weights /= ds.shape[0]
# apply weight
l1_loss = l1_loss.multiply(out_weights)
l1_loss = l1_loss.masked_select(
out_masks.broadcast_to(l1_loss.shape)).sum()
duration_loss = (duration_loss.multiply(duration_weights)
.masked_select(duration_masks).sum())
pitch_masks = duration_masks.unsqueeze(-1)
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.multiply(pitch_weights)
pitch_loss = pitch_loss.masked_select(
pitch_masks.broadcast_to(pitch_loss.shape)).sum()
energy_loss = energy_loss.multiply(pitch_weights)
energy_loss = energy_loss.masked_select(
pitch_masks.broadcast_to(energy_loss.shape)).sum()
return l1_loss, duration_loss, pitch_loss, energy_loss