291 lines
9.7 KiB
291 lines
9.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import soundfile as sf
|
|
import yaml
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
|
|
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference
|
|
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
|
|
from paddlespeech.t2s.models.parallel_wavegan import PWGInference
|
|
from paddlespeech.t2s.modules.normalizer import ZScore
|
|
|
|
|
|
class StyleFastSpeech2Inference(FastSpeech2Inference):
|
|
def __init__(self, normalizer, model, pitch_stats_path, energy_stats_path):
|
|
super().__init__(normalizer, model)
|
|
self.pitch_mean, self.pitch_std = np.load(pitch_stats_path)
|
|
self.pitch_mean = paddle.to_tensor(self.pitch_mean)
|
|
self.pitch_std = paddle.to_tensor(self.pitch_std)
|
|
self.energy_mean, self.energy_std = np.load(energy_stats_path)
|
|
self.energy_mean = paddle.to_tensor(self.energy_mean)
|
|
self.energy_std = paddle.to_tensor(self.energy_std)
|
|
|
|
def denorm(self, data, mean, std):
|
|
return data * std + mean
|
|
|
|
def norm(self, data, mean, std):
|
|
return (data - mean) / std
|
|
|
|
def forward(self,
|
|
text,
|
|
durations=None,
|
|
pitch=None,
|
|
energy=None,
|
|
robot=False):
|
|
"""
|
|
Parameters
|
|
----------
|
|
text : Tensor(int64)
|
|
Input sequence of characters (T,).
|
|
speech : Tensor, optional
|
|
Feature sequence to extract style (N, idim).
|
|
durations : Tensor, optional (int64)
|
|
Groundtruth of duration (T,) or
|
|
float/int (represents ratio)
|
|
pitch : Tensor, optional
|
|
Groundtruth of token-averaged pitch (T, 1) or
|
|
float/int (represents ratio)
|
|
energy : Tensor, optional
|
|
Groundtruth of token-averaged energy (T, 1) or
|
|
float (represents ratio)
|
|
robot : bool, optional
|
|
Weather output robot style
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Output sequence of features (L, odim).
|
|
"""
|
|
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
|
|
text, durations=None, pitch=None, energy=None)
|
|
|
|
# set duration
|
|
if isinstance(durations, float):
|
|
durations = durations * d_outs
|
|
elif isinstance(durations, paddle.Tensor):
|
|
durations = durations
|
|
else:
|
|
durations = d_outs
|
|
|
|
if robot:
|
|
# set normed pitch to zeros have the same effect with set denormd ones to mean
|
|
pitch = paddle.zeros(p_outs.shape)
|
|
|
|
# set pitch, can overwrite robot set
|
|
if isinstance(pitch, (int, float)):
|
|
p_Hz = paddle.exp(
|
|
self.denorm(p_outs, self.pitch_mean, self.pitch_std))
|
|
p_HZ = pitch * p_Hz
|
|
pitch = self.norm(paddle.log(p_HZ), self.pitch_mean, self.pitch_std)
|
|
elif isinstance(pitch, paddle.Tensor):
|
|
pitch = pitch
|
|
else:
|
|
pitch = p_outs
|
|
|
|
# set energy
|
|
if isinstance(energy, (int, float)):
|
|
e_dnorm = self.denorm(e_outs, self.energy_mean, self.energy_std)
|
|
e_dnorm = energy * e_dnorm
|
|
energy = self.norm(e_dnorm, self.energy_mean, self.energy_std)
|
|
elif isinstance(energy, paddle.Tensor):
|
|
energy = energy
|
|
else:
|
|
energy = e_outs
|
|
|
|
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
|
|
text,
|
|
durations=durations,
|
|
pitch=pitch,
|
|
energy=energy,
|
|
use_teacher_forcing=True)
|
|
|
|
logmel = self.normalizer.inverse(normalized_mel)
|
|
return logmel
|
|
|
|
|
|
def evaluate(args, fastspeech2_config, pwg_config):
|
|
|
|
# construct dataset for evaluation
|
|
sentences = []
|
|
with open(args.text, 'rt') as f:
|
|
for line in f:
|
|
utt_id, sentence = line.strip().split()
|
|
sentences.append((utt_id, sentence))
|
|
|
|
with open(args.phones_dict, "r") as f:
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
vocab_size = len(phn_id)
|
|
print("vocab_size:", vocab_size)
|
|
|
|
odim = fastspeech2_config.n_mels
|
|
model = FastSpeech2(
|
|
idim=vocab_size, odim=odim, **fastspeech2_config["model"])
|
|
|
|
model.set_state_dict(
|
|
paddle.load(args.fastspeech2_checkpoint)["main_params"])
|
|
model.eval()
|
|
|
|
vocoder = PWGGenerator(**pwg_config["generator_params"])
|
|
vocoder.set_state_dict(paddle.load(args.pwg_checkpoint)["generator_params"])
|
|
vocoder.remove_weight_norm()
|
|
vocoder.eval()
|
|
print("model done!")
|
|
|
|
frontend = Frontend(phone_vocab_path=args.phones_dict)
|
|
print("frontend done!")
|
|
|
|
stat = np.load(args.fastspeech2_stat)
|
|
mu, std = stat
|
|
mu = paddle.to_tensor(mu)
|
|
std = paddle.to_tensor(std)
|
|
fastspeech2_normalizer = ZScore(mu, std)
|
|
|
|
stat = np.load(args.pwg_stat)
|
|
mu, std = stat
|
|
mu = paddle.to_tensor(mu)
|
|
std = paddle.to_tensor(std)
|
|
pwg_normalizer = ZScore(mu, std)
|
|
|
|
fastspeech2_inference = StyleFastSpeech2Inference(
|
|
fastspeech2_normalizer, model, args.fastspeech2_pitch_stat,
|
|
args.fastspeech2_energy_stat)
|
|
fastspeech2_inference.eval()
|
|
|
|
pwg_inference = PWGInference(pwg_normalizer, vocoder)
|
|
pwg_inference.eval()
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
styles = ["normal", "robot", "1.2xspeed", "0.8xspeed", "child_voice"]
|
|
for style in styles:
|
|
robot = False
|
|
durations = None
|
|
pitch = None
|
|
energy = None
|
|
|
|
if style == "robot":
|
|
# all tones in phones be `1`
|
|
# all pitch should be the same, we use mean here
|
|
robot = True
|
|
if style == "1.2xspeed":
|
|
durations = 1 / 1.2
|
|
if style == "0.8xspeed":
|
|
durations = 1 / 0.8
|
|
if style == "child_voice":
|
|
pitch = 1.3
|
|
sub_output_dir = output_dir / style
|
|
sub_output_dir.mkdir(parents=True, exist_ok=True)
|
|
for utt_id, sentence in sentences:
|
|
input_ids = frontend.get_input_ids(
|
|
sentence, merge_sentences=True, robot=robot)
|
|
phone_ids = input_ids["phone_ids"][0]
|
|
|
|
with paddle.no_grad():
|
|
mel = fastspeech2_inference(
|
|
phone_ids,
|
|
durations=durations,
|
|
pitch=pitch,
|
|
energy=energy,
|
|
robot=robot)
|
|
wav = pwg_inference(mel)
|
|
|
|
sf.write(
|
|
str(sub_output_dir / (utt_id + ".wav")),
|
|
wav.numpy(),
|
|
samplerate=fastspeech2_config.fs)
|
|
print(f"{style}_{utt_id} done!")
|
|
|
|
|
|
def main():
|
|
# parse args and config and redirect to train_sp
|
|
parser = argparse.ArgumentParser(
|
|
description="Synthesize with fastspeech2 & parallel wavegan.")
|
|
parser.add_argument(
|
|
"--fastspeech2-config", type=str, help="fastspeech2 config file.")
|
|
parser.add_argument(
|
|
"--fastspeech2-checkpoint",
|
|
type=str,
|
|
help="fastspeech2 checkpoint to load.")
|
|
parser.add_argument(
|
|
"--fastspeech2-stat",
|
|
type=str,
|
|
help="mean and standard deviation used to normalize spectrogram when training fastspeech2."
|
|
)
|
|
parser.add_argument(
|
|
"--fastspeech2-pitch-stat",
|
|
type=str,
|
|
help="mean and standard deviation used to normalize pitch when training fastspeech2"
|
|
)
|
|
parser.add_argument(
|
|
"--fastspeech2-energy-stat",
|
|
type=str,
|
|
help="mean and standard deviation used to normalize energy when training fastspeech2."
|
|
)
|
|
parser.add_argument(
|
|
"--pwg-config", type=str, help="parallel wavegan config file.")
|
|
parser.add_argument(
|
|
"--pwg-checkpoint",
|
|
type=str,
|
|
help="parallel wavegan generator parameters to load.")
|
|
parser.add_argument(
|
|
"--pwg-stat",
|
|
type=str,
|
|
help="mean and standard deviation used to normalize spectrogram when training parallel wavegan."
|
|
)
|
|
parser.add_argument(
|
|
"--phones-dict",
|
|
type=str,
|
|
default="phone_id_map.txt",
|
|
help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--text",
|
|
type=str,
|
|
help="text to synthesize, a 'utt_id sentence' pair per line.")
|
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
parser.add_argument("--verbose", type=int, default=1, help="verbose.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
elif args.ngpu > 0:
|
|
paddle.set_device("gpu")
|
|
else:
|
|
print("ngpu should >= 0 !")
|
|
|
|
with open(args.fastspeech2_config) as f:
|
|
fastspeech2_config = CfgNode(yaml.safe_load(f))
|
|
with open(args.pwg_config) as f:
|
|
pwg_config = CfgNode(yaml.safe_load(f))
|
|
|
|
print("========Args========")
|
|
print(yaml.safe_dump(vars(args)))
|
|
print("========Config========")
|
|
print(fastspeech2_config)
|
|
print(pwg_config)
|
|
|
|
evaluate(args, fastspeech2_config, pwg_config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|