You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/parakeet/exps/transformer_tts/preprocess.py

282 lines
8.5 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path
from typing import Any
from typing import Dict
from typing import List
import jsonlines
import librosa
import numpy as np
import tqdm
import yaml
from yacs.config import CfgNode as Configuration
from parakeet.data.get_feats import LogMelFBank
from parakeet.frontend import English
def get_lj_sentences(file_name, frontend):
'''
read MFA duration.txt
Parameters
----------
file_name : str or Path
Returns
----------
Dict
sentence: {'utt': ([char], [int])}
'''
f = open(file_name, 'r')
sentence = {}
speaker_set = set()
for line in f:
line_list = line.strip().split('|')
utt = line_list[0]
speaker = utt.split("-")[0][:2]
speaker_set.add(speaker)
raw_text = line_list[-1]
phonemes = frontend.phoneticize(raw_text)
phonemes = phonemes[1:-1]
phonemes = [phn for phn in phonemes if not phn.isspace()]
sentence[utt] = (phonemes, speaker)
f.close()
return sentence, speaker_set
def get_input_token(sentence, output_path):
'''
get phone set from training data and save it
Parameters
----------
sentence : Dict
sentence: {'utt': ([char], str)}
output_path : str or path
path to save phone_id_map
'''
phn_token = set()
for utt in sentence:
for phn in sentence[utt][0]:
if phn != "<eos>":
phn_token.add(phn)
phn_token = list(phn_token)
phn_token.sort()
phn_token = ["<pad>", "<unk>"] + phn_token
phn_token += ["<eos>"]
with open(output_path, 'w') as f:
for i, phn in enumerate(phn_token):
f.write(phn + ' ' + str(i) + '\n')
def get_spk_id_map(speaker_set, output_path):
speakers = sorted(list(speaker_set))
with open(output_path, 'w') as f:
for i, spk in enumerate(speakers):
f.write(spk + ' ' + str(i) + '\n')
def process_sentence(config: Dict[str, Any],
fp: Path,
sentences: Dict,
output_dir: Path,
mel_extractor=None):
utt_id = fp.stem
record = None
if utt_id in sentences:
# reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs)
if len(wav.shape) != 1 or np.abs(wav).max() > 1.0:
return record
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
assert np.abs(wav).max(
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
phones = sentences[utt_id][0]
speaker = sentences[utt_id][1]
logmel = mel_extractor.get_log_mel_fbank(wav, base='e')
# change duration according to mel_length
num_frames = logmel.shape[0]
mel_dir = output_dir / "data_speech"
mel_dir.mkdir(parents=True, exist_ok=True)
mel_path = mel_dir / (utt_id + "_speech.npy")
np.save(mel_path, logmel)
record = {
"utt_id": utt_id,
"phones": phones,
"text_lengths": len(phones),
"speech_lengths": num_frames,
"speech": str(mel_path),
"speaker": speaker
}
return record
def process_sentences(config,
fps: List[Path],
sentences: Dict,
output_dir: Path,
mel_extractor=None,
nprocs: int=1):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(config, fp, sentences, output_dir,
mel_extractor)
if record:
results.append(record)
else:
with ThreadPoolExecutor(nprocs) as pool:
futures = []
with tqdm.tqdm(total=len(fps)) as progress:
for fp in fps:
future = pool.submit(process_sentence, config, fp,
sentences, output_dir, mel_extractor)
future.add_done_callback(lambda p: progress.update())
futures.append(future)
results = []
for ft in futures:
record = ft.result()
if record:
results.append(record)
results.sort(key=itemgetter("utt_id"))
with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer:
for item in results:
writer.write(item)
print("Done")
def main():
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--dataset",
default="ljspeech",
type=str,
help="name of dataset, should in {ljspeech} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump feature files.")
parser.add_argument(
"--config-path",
default="conf/default.yaml",
type=str,
help="yaml format configuration file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
parser.add_argument(
"--num-cpu", type=int, default=1, help="number of process.")
args = parser.parse_args()
config_path = Path(args.config_path).resolve()
root_dir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
assert root_dir.is_dir()
with open(config_path, 'rt') as f:
_C = yaml.safe_load(f)
_C = Configuration(_C)
config = _C.clone()
if args.verbose > 1:
print(vars(args))
print(config)
phone_id_map_path = dumpdir / "phone_id_map.txt"
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
if args.dataset == "ljspeech":
wav_files = sorted(list((root_dir / "wavs").rglob("*.wav")))
frontend = English()
sentences, speaker_set = get_lj_sentences(root_dir / "metadata.csv",
frontend)
get_input_token(sentences, phone_id_map_path)
get_spk_id_map(speaker_set, speaker_id_map_path)
# split data into 3 sections
num_train = 12900
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
train_dump_dir = dumpdir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dumpdir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dumpdir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# Extractor
mel_extractor = LogMelFBank(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
# process for the 3 sections
if train_wav_files:
process_sentences(
config,
train_wav_files,
sentences,
train_dump_dir,
mel_extractor,
nprocs=args.num_cpu)
if dev_wav_files:
process_sentences(
config,
dev_wav_files,
sentences,
dev_dump_dir,
mel_extractor,
nprocs=args.num_cpu)
if test_wav_files:
process_sentences(
config,
test_wav_files,
sentences,
test_dump_dir,
mel_extractor,
nprocs=args.num_cpu)
if __name__ == "__main__":
main()