You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddleaudio/tests/benchmark/features.py

118 lines
3.4 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import librosa
import numpy as np
import paddle
import paddleaudio
# Feature conf
mel_conf = {
'sr': 16000,
'n_fft': 512,
'hop_length': 128,
'n_mels': 40,
}
mfcc_conf = {
'n_mfcc': 20,
'top_db': 80.0,
}
mfcc_conf.update(mel_conf)
input_shape = (48000)
waveform = np.random.random(size=input_shape)
waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
def enable_cpu_device():
paddle.set_device('cpu')
def enable_gpu_device():
paddle.set_device('gpu')
mel_extractor = paddleaudio.features.MelSpectrogram(
**mel_conf, f_min=0.0, dtype=waveform_tensor.dtype)
def melspectrogram():
return mel_extractor(waveform_tensor).squeeze(0)
def test_melspect_cpu(benchmark):
enable_cpu_device()
feature_paddleaudio = benchmark(melspectrogram)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_paddleaudio, decimal=4)
def test_melspect_gpu(benchmark):
enable_gpu_device()
feature_paddleaudio = benchmark(melspectrogram)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_paddleaudio, decimal=4)
log_mel_extractor = paddleaudio.features.LogMelSpectrogram(
**mel_conf, f_min=0.0, dtype=waveform_tensor.dtype)
def log_melspectrogram():
return log_mel_extractor(waveform_tensor).squeeze(0)
def test_log_melspect_cpu(benchmark):
enable_cpu_device()
feature_paddleaudio = benchmark(log_melspectrogram)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
feature_librosa = librosa.power_to_db(feature_librosa, top_db=None)
np.testing.assert_array_almost_equal(
feature_librosa, feature_paddleaudio, decimal=4)
def test_log_melspect_gpu(benchmark):
enable_gpu_device()
feature_paddleaudio = benchmark(log_melspectrogram)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
feature_librosa = librosa.power_to_db(feature_librosa, top_db=None)
np.testing.assert_array_almost_equal(
feature_librosa, feature_paddleaudio, decimal=4)
mfcc_extractor = paddleaudio.features.MFCC(
**mfcc_conf, f_min=0.0, dtype=waveform_tensor.dtype)
def mfcc():
return mfcc_extractor(waveform_tensor).squeeze(0)
def test_mfcc_cpu(benchmark):
enable_cpu_device()
feature_paddleaudio = benchmark(mfcc)
feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_paddleaudio, decimal=4)
def test_mfcc_gpu(benchmark):
enable_gpu_device()
feature_paddleaudio = benchmark(mfcc)
feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_paddleaudio, decimal=4)