|
|
11 months ago | |
|---|---|---|
| .. | ||
| conf | 3 years ago | |
| local | 11 months ago | |
| README.md | 11 months ago | |
| finetune.sh | 3 years ago | |
| path.sh | 4 years ago | |
| run.sh | 11 months ago | |
README.md
Multi Band MelGAN with CSMSC
This example contains code used to train a Multi Band MelGAN model with Chinese Standard Mandarin Speech Copus.
Dataset
Download and Extract
Download CSMSC from it's official website and extract it to ~/datasets. Then the dataset is in the directory ~/datasets/BZNSYP.
Get MFA Result and Extract
We use MFA results to cut the silence in the edge of audio. You can download from here baker_alignment_tone.tar.gz, or train your MFA model reference to mfa example of our repo.
Get Started
Assume the path to the dataset is ~/datasets/BZNSYP.
Assume the path to the MFA result of CSMSC is ./baker_alignment_tone.
Run the command below to
- source path.
- preprocess the dataset.
- train the model.
- synthesize wavs.
- synthesize waveform from
metadata.jsonl. - synthesize waveform from text file.
- synthesize waveform from
./run.sh
You can choose a range of stages you want to run, or set stage equal to stop-stage to use only one stage, for example, running the following command will only preprocess the dataset.
./run.sh --stage 0 --stop-stage 0
Data Preprocessing
./local/preprocess.sh ${conf_path}
When it is done. A dump folder is created in the current directory. The structure of the dump folder is listed below.
dump
├── dev
│ ├── norm
│ └── raw
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── feats_stats.npy
The dataset is split into 3 parts, namely train, dev, and test, each of which contains a norm and raw subfolder. The raw folder contains the log magnitude of the mel spectrogram of each utterance, while the norm folder contains the normalized spectrogram. The statistics used to normalize the spectrogram are computed from the training set, which is located in dump/train/feats_stats.npy.
Also, there is a metadata.jsonl in each subfolder. It is a table-like file that contains id and paths to the spectrogram of each utterance.
Model Training
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
./local/train.sh calls ${BIN_DIR}/train.py.
Here's the complete help message.
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU]
Train a Multi-Band MelGAN model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG Multi-Band MelGAN config file.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--configis a config file in yaml format to overwrite the default config, which can be found atconf/default.yaml.--train-metadataand--dev-metadatashould be the metadata file in the normalized subfolder oftrainanddevin thedumpfolder.--output-diris the directory to save the results of the experiment. Checkpoints are saved incheckpoints/inside this directory.--ngpuis the number of gpus to use, if ngpu == 0, use cpu.
Synthesizing
We use MultiBand MelGAN as the neural vocoder.
Download pretrained MultiBand MelGAN model from mb_melgan_csmsc_ckpt_0.1.1.zip and unzip it.
unzip mb_melgan_csmsc_ckpt_0.1.1.zip
HiFiGAN checkpoint contains files listed below.
mb_melgan_csmsc_ckpt_0.1.1
├── default.yaml # default config used to train MultiBand MelGAN
├── feats_stats.npy # statistics used to normalize spectrogram when training MultiBand MelGAN
└── snapshot_iter_1000000.pdz # generator parameters of MultiBand MelGAN
./local/synthesize.sh calls ${BIN_DIR}/../synthesize.py, which can synthesize waveform from metadata.jsonl.
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
usage: synthesize.py [-h] [--generator-type GENERATOR_TYPE] [--config CONFIG]
[--checkpoint CHECKPOINT] [--test-metadata TEST_METADATA]
[--output-dir OUTPUT_DIR] [--ngpu NGPU]
Synthesize with GANVocoder.
optional arguments:
-h, --help show this help message and exit
--generator-type GENERATOR_TYPE
type of GANVocoder, should in {pwgan, mb_melgan,
style_melgan, } now
--config CONFIG GANVocoder config file.
--checkpoint CHECKPOINT
snapshot to load.
--test-metadata TEST_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--configmulti band melgan config file. You should use the same config with which the model is trained.--checkpointis the checkpoint to load. Pick one of the checkpoints fromcheckpointsinside the training output directory.--test-metadatais the metadata of the test dataset. Use themetadata.jsonlin thedev/normsubfolder from the processed directory.--output-diris the directory to save the synthesized audio files.--ngpuis the number of gpus to use, if ngpu == 0, use cpu.
We use Fastspeech2 as the acoustic model. Download pretrained fastspeech2_nosil model from fastspeech2_nosil_baker_ckpt_0.4.zipand unzip it.
unzip fastspeech2_nosil_baker_ckpt_0.4.zip
Fastspeech2 checkpoint contains files listed below.
fastspeech2_nosil_baker_ckpt_0.4
├── default.yaml # default config used to train fastspeech2
├── phone_id_map.txt # phone vocabulary file when training fastspeech2
├── snapshot_iter_76000.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
./local/synthesize_e2e.sh calls ${BIN_DIR}/../../synthesize_e2e.py, which can synthesize waveform from text file.
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
usage: synthesize_e2e.py [-h]
[--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT]
[--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc,tacotron2_ljspeech}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--spk_id SPK_ID spk id for multi speaker acoustic model
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc,hifigan_ljspeech,hifigan_aishell3,hifigan_vctk,wavernn_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
--amis acoustic model type with the format {model_name}_{dataset}--am_config,--am_ckpt,--am_statand--phones_dictare arguments for acoustic model, which correspond to the 4 files in the fastspeech2 pretrained model.--vocis vocoder type with the format {model_name}_{dataset}--voc_config,--voc_ckpt,--voc_statare arguments for vocoder, which correspond to the 3 files in the parallel wavegan pretrained model.--langis the model language, which can bezhoren.--test_metadatashould be the metadata file in the normalized subfolder oftestin thedumpfolder.--textis the text file, which contains sentences to synthesize.--output_diris the directory to save synthesized audio files.--ngpuis the number of gpus to use, if ngpu == 0, use cpu.
Fine-tuning
Since there is no noise in the input of Multi-Band MelGAN, the audio quality is not so good (see espnet issue), we refer to the method proposed in HiFiGAN, finetune Multi-Band MelGAN with the predicted mel-spectrogram from FastSpeech2.
The length of mel-spectrograms should align with the length of wavs, so we should generate mels using ground truth alignment.
But since we are fine-tuning, we should use the statistics computed during the training step.
You should first download pretrained FastSpeech2 model from fastspeech2_nosil_baker_ckpt_0.4.zip and unzip it.
Assume the path to the dump-dir of training step is dump.
Assume the path to the duration result of CSMSC is durations.txt (generated during the training step's preprocessing).
Assume the path to the pretrained FastSpeech2 model is fastspeech2_nosil_baker_ckpt_0.4.
The finetune.sh can
- source path.
- generate ground truth alignment mels.
- link
*_wave.npyfromdumptodump_finetune(because we only use new mels, the wavs are the ones used during the training step). - copy features' stats from
dumptodump_finetune. - normalize the ground truth alignment mels.
- finetune the model.
Before finetune, make sure that the pretrained model is in finetune.sh 's ${output-dir}/checkpoints, and there is a records.jsonl in it to refer to this pretrained model
exp/finetune/checkpoints
├── records.jsonl
└── snapshot_iter_1000000.pdz
The content of records.jsonl should be as follows (change "path" to your ckpt path):
{"time": "2021-11-21 15:11:20.337311", "path": "~/PaddleSpeech/examples/csmsc/voc3/exp/finetune/checkpoints/snapshot_iter_1000000.pdz", "iteration": 1000000}
Run the command below
./finetune.sh
By default, finetune.sh will use conf/finetune.yaml as config, the dump-dir is dump_finetune, the experiment dir is exp/finetune.
TODO:
The hyperparameter of finetune.yaml is not good enough, a smaller learning_rate should be used (more milestones should be set).
Pretrained Models
The pretrained model can be downloaded here:
The finetuned model can be downloaded here:
The static model can be downloaded here:
The PIR static model can be downloaded here:
- mb_melgan_csmsc_static_pir_0.1.1.zip (Run PIR model need to set FLAGS_enable_pir_api=1, and PIR model only worked with paddlepaddle>=3.0.0b2)
The ONNX model can be downloaded here:
The Paddle-Lite model can be downloaded here:
| Model | Step | eval/generator_loss | eval/log_stft_magnitude_loss | eval/spectral_convergence_loss | eval/sub_log_stft_magnitude_loss | eval/sub_spectral_convergence_loss |
|---|---|---|---|---|---|---|
| default | 1(gpu) x 1000000 | 2.4851 | 0.71778 | 0.2761 | 0.66334 | 0.2777 |
| finetune | 1(gpu) x 1000000 | 3.196967 | 0.977804 | 0.778484 | 0.889576 | 0.776756 |
Multi Band MelGAN checkpoint contains files listed below.
mb_melgan_csmsc_ckpt_0.1.1
├── default.yaml # default config used to train multi band melgan
├── feats_stats.npy # statistics used to normalize spectrogram when training multi band melgan
└── snapshot_iter_1000000.pdz # generator parameters of multi band melgan
FastSpeech2 checkpoint contains files listed below.
fastspeech2_nosil_baker_ckpt_0.4
├── default.yaml # default config used to train fastspeech2
├── phone_id_map.txt # phone vocabulary file when training fastspeech2
├── snapshot_iter_76000.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
Acknowledgement
We adapted some code from https://github.com/kan-bayashi/ParallelWaveGAN.