You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/syn_utils.py

786 lines
28 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import re
from pathlib import Path
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
import jsonlines
import numpy as np
import onnxruntime as ort
import paddle
from paddle import inference
from paddle import jit
from paddle.io import DataLoader
from paddle.static import InputSpec
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import *
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.datasets.vocoder_batch_fn import Clip_static
from paddlespeech.t2s.frontend.canton_frontend import CantonFrontend
from paddlespeech.t2s.frontend.en_frontend import English
from paddlespeech.t2s.frontend.mix_frontend import MixFrontend
from paddlespeech.t2s.frontend.sing_frontend import SingFrontend
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.modules.normalizer import ZScore
from paddlespeech.utils.dynamic_import import dynamic_import
# remove [W:onnxruntime: xxx] from ort
ort.set_default_logger_severity(3)
model_alias = {
# acoustic model
"speedyspeech":
"paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
"speedyspeech_inference":
"paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
"fastspeech2":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2",
"fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2":
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
"diffsinger":
"paddlespeech.t2s.models.diffsinger:DiffSinger",
"diffsinger_inference":
"paddlespeech.t2s.models.diffsinger:DiffSingerInference",
# voc
"pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
"pwgan_inference":
"paddlespeech.t2s.models.parallel_wavegan:PWGInference",
"mb_melgan":
"paddlespeech.t2s.models.melgan:MelGANGenerator",
"mb_melgan_inference":
"paddlespeech.t2s.models.melgan:MelGANInference",
"style_melgan":
"paddlespeech.t2s.models.melgan:StyleMelGANGenerator",
"style_melgan_inference":
"paddlespeech.t2s.models.melgan:StyleMelGANInference",
"hifigan":
"paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
"hifigan_inference":
"paddlespeech.t2s.models.hifigan:HiFiGANInference",
"wavernn":
"paddlespeech.t2s.models.wavernn:WaveRNN",
"wavernn_inference":
"paddlespeech.t2s.models.wavernn:WaveRNNInference",
"erniesat":
"paddlespeech.t2s.models.ernie_sat:ErnieSAT",
"erniesat_inference":
"paddlespeech.t2s.models.ernie_sat:ErnieSATInference",
}
def denorm(data, mean, std):
return data * std + mean
def norm(data, mean, std):
return (data - mean) / std
def get_chunks(mel, chunk_size: int, pad_size: int):
"""
Split mel by chunk size with left and right context.
Args:
mel (paddle.Tensor): mel spectrogram, shape (B, T, D)
chunk_size (int): chunk size
pad_size (int): size for left and right context.
"""
T = mel.shape[1]
n = math.ceil(T / chunk_size)
chunks = []
for i in range(n):
start = max(0, i * chunk_size - pad_size)
end = min((i + 1) * chunk_size + pad_size, T)
chunks.append(mel[:, start:end, :])
return chunks
# input
def get_sentences(text_file: Optional[os.PathLike], lang: str='zh'):
# construct dataset for evaluation
sentences = []
with open(text_file, 'rt', encoding='utf-8') as f:
for line in f:
if line.strip() != "":
items = re.split(r"\s+", line.strip(), maxsplit=1)
assert len(items) == 2
utt_id = items[0]
sentence = items[1]
sentences.append((utt_id, sentence))
return sentences
# input for svs
def get_sentences_svs(text_file: Optional[os.PathLike]):
# construct dataset for evaluation
sentences = []
with jsonlines.open(text_file, 'r') as reader:
svs_inputs = list(reader)
for svs_input in svs_inputs:
utt_id = svs_input['utt_id']
sentence = svs_input
sentences.append((utt_id, sentence))
return sentences
# am only
def get_test_dataset(test_metadata: List[Dict[str, Any]],
am: str,
speaker_dict: Optional[os.PathLike]=None,
voice_cloning: bool=False):
# model: {model_name}_{dataset}
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
converters = {}
if am_name == 'fastspeech2':
fields = ["utt_id", "text"]
if am_dataset in {"aishell3", "vctk", "mix",
"canton"} and speaker_dict is not None:
print("multiple speaker fastspeech2!")
fields += ["spk_id"]
elif voice_cloning:
print("voice cloning!")
fields += ["spk_emb"]
else:
print("single speaker fastspeech2!")
elif am_name == 'diffsinger':
fields = ["utt_id", "text", "note", "note_dur", "is_slur"]
elif am_name == 'speedyspeech':
fields = ["utt_id", "phones", "tones"]
elif am_name == 'tacotron2':
fields = ["utt_id", "text"]
if voice_cloning:
print("voice cloning!")
fields += ["spk_emb"]
elif am_name == 'erniesat':
fields = [
"utt_id", "text", "text_lengths", "speech", "speech_lengths",
"align_start", "align_end"
]
converters = {"speech": np.load}
else:
print("wrong am, please input right am!!!")
test_dataset = DataTable(
data=test_metadata, fields=fields, converters=converters)
return test_dataset
# am and voc, for PTQ_static
def get_dev_dataloader(dev_metadata: List[Dict[str, Any]],
am: str,
batch_size: int=1,
speaker_dict: Optional[os.PathLike]=None,
voice_cloning: bool=False,
n_shift: int=300,
batch_max_steps: int=16200,
shuffle: bool=True):
# model: {model_name}_{dataset}
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
converters = {}
if am_name == 'fastspeech2':
fields = ["utt_id", "text"]
if am_dataset in {"aishell3", "vctk", "mix",
"canton"} and speaker_dict is not None:
print("multiple speaker fastspeech2!")
collate_fn = fastspeech2_multi_spk_batch_fn_static
fields += ["spk_id"]
elif voice_cloning:
print("voice cloning!")
collate_fn = fastspeech2_multi_spk_batch_fn_static
fields += ["spk_emb"]
else:
print("single speaker fastspeech2!")
collate_fn = fastspeech2_single_spk_batch_fn_static
elif am_name == 'speedyspeech':
fields = ["utt_id", "phones", "tones"]
if am_dataset in {"aishell3", "vctk",
"mix"} and speaker_dict is not None:
print("multiple speaker speedyspeech!")
collate_fn = speedyspeech_multi_spk_batch_fn_static
fields += ["spk_id"]
else:
print("single speaker speedyspeech!")
collate_fn = speedyspeech_single_spk_batch_fn_static
fields = ["utt_id", "phones", "tones"]
elif am_name == 'tacotron2':
fields = ["utt_id", "text"]
if voice_cloning:
print("voice cloning!")
collate_fn = tacotron2_multi_spk_batch_fn_static
fields += ["spk_emb"]
else:
print("single speaker tacotron2!")
collate_fn = tacotron2_single_spk_batch_fn_static
else:
print("voc dataloader")
# am
if am_name not in {'pwgan', 'mb_melgan', 'hifigan'}:
dev_dataset = DataTable(
data=dev_metadata,
fields=fields,
converters=converters, )
dev_dataloader = DataLoader(
dev_dataset,
shuffle=shuffle,
drop_last=False,
batch_size=batch_size,
collate_fn=collate_fn)
# vocoder
else:
# pwgan: batch_max_steps: 25500 aux_context_window: 2
# mb_melgan: batch_max_steps: 16200 aux_context_window 0
# hifigan: batch_max_steps: 8400 aux_context_window 0
aux_context_window = 0
if am_name == 'pwgan':
aux_context_window = 2
train_batch_fn = Clip_static(
batch_max_steps=batch_max_steps,
hop_size=n_shift,
aux_context_window=aux_context_window)
dev_dataset = DataTable(
data=dev_metadata,
fields=["wave", "feats"],
converters={
"wave": np.load,
"feats": np.load,
}, )
dev_dataloader = DataLoader(
dev_dataset,
shuffle=shuffle,
drop_last=False,
batch_size=batch_size,
collate_fn=train_batch_fn)
return dev_dataloader
# frontend
def get_frontend(lang: str='zh',
phones_dict: Optional[os.PathLike]=None,
tones_dict: Optional[os.PathLike]=None,
pinyin_phone: Optional[os.PathLike]=None,
use_rhy=False):
if lang == 'zh':
frontend = Frontend(
phone_vocab_path=phones_dict,
tone_vocab_path=tones_dict,
use_rhy=use_rhy)
elif lang == 'canton':
frontend = CantonFrontend(phone_vocab_path=phones_dict)
elif lang == 'en':
frontend = English(phone_vocab_path=phones_dict)
elif lang == 'mix':
frontend = MixFrontend(
phone_vocab_path=phones_dict, tone_vocab_path=tones_dict)
elif lang == 'sing':
frontend = SingFrontend(
pinyin_phone_path=pinyin_phone, phone_vocab_path=phones_dict)
else:
print("wrong lang!")
return frontend
def run_frontend(
frontend: object,
text: str,
merge_sentences: bool=False,
get_tone_ids: bool=False,
lang: str='zh',
to_tensor: bool=True,
add_blank: bool=False,
svs_input: Dict[str, str]=None, ):
outs = dict()
if lang == 'zh':
input_ids = {}
if text.strip() != "" and re.match(r".*?<speak>.*?</speak>.*", text,
re.DOTALL):
# using ssml
input_ids = frontend.get_input_ids_ssml(
text,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids,
to_tensor=to_tensor)
else:
input_ids = frontend.get_input_ids(
text,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids,
to_tensor=to_tensor,
add_blank=add_blank)
phone_ids = input_ids["phone_ids"]
if get_tone_ids:
tone_ids = input_ids["tone_ids"]
outs.update({'tone_ids': tone_ids})
elif lang == 'canton':
input_ids = frontend.get_input_ids(
text, merge_sentences=merge_sentences, to_tensor=to_tensor)
phone_ids = input_ids["phone_ids"]
elif lang == 'en':
input_ids = frontend.get_input_ids(
text, merge_sentences=merge_sentences, to_tensor=to_tensor)
phone_ids = input_ids["phone_ids"]
elif lang == 'mix':
input_ids = frontend.get_input_ids(
text, merge_sentences=merge_sentences, to_tensor=to_tensor)
phone_ids = input_ids["phone_ids"]
elif lang == 'sing':
input_ids = frontend.get_input_ids(
svs_input=svs_input, to_tensor=to_tensor)
phone_ids = input_ids["phone_ids"]
note_ids = input_ids["note_ids"]
note_durs = input_ids["note_durs"]
is_slurs = input_ids["is_slurs"]
outs.update({'note_ids': note_ids})
outs.update({'note_durs': note_durs})
outs.update({'is_slurs': is_slurs})
else:
print("lang should in {'zh', 'en', 'mix', 'canton', 'sing'}!")
outs.update({'phone_ids': phone_ids})
return outs
# dygraph
def get_am_inference(
am: str='fastspeech2_csmsc',
am_config: CfgNode=None,
am_ckpt: Optional[os.PathLike]=None,
am_stat: Optional[os.PathLike]=None,
phones_dict: Optional[os.PathLike]=None,
tones_dict: Optional[os.PathLike]=None,
speaker_dict: Optional[os.PathLike]=None,
return_am: bool=False,
speech_stretchs: Optional[os.PathLike]=None, ):
with open(phones_dict, 'rt', encoding='utf-8') as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
tone_size = None
if tones_dict is not None:
with open(tones_dict, 'rt', encoding='utf-8') as f:
tone_id = [line.strip().split() for line in f.readlines()]
tone_size = len(tone_id)
spk_num = None
if speaker_dict is not None:
with open(speaker_dict, 'rt', encoding='utf-8') as f:
spk_id = [line.strip().split() for line in f.readlines()]
spk_num = len(spk_id)
odim = am_config.n_mels
# model: {model_name}_{dataset}
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
am_class = dynamic_import(am_name, model_alias)
am_inference_class = dynamic_import(am_name + '_inference', model_alias)
if am_name == 'fastspeech2':
am = am_class(
idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"])
elif am_name == 'diffsinger':
with open(speech_stretchs, "r") as f:
spec_min = np.load(speech_stretchs)[0]
spec_max = np.load(speech_stretchs)[1]
spec_min = paddle.to_tensor(spec_min)
spec_max = paddle.to_tensor(spec_max)
am_config["model"]["fastspeech2_params"]["spk_num"] = spk_num
am = am_class(
spec_min=spec_min,
spec_max=spec_max,
idim=vocab_size,
odim=odim,
**am_config["model"], )
elif am_name == 'speedyspeech':
am = am_class(
vocab_size=vocab_size,
tone_size=tone_size,
spk_num=spk_num,
**am_config["model"])
elif am_name == 'tacotron2':
am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
elif am_name == 'erniesat':
am = am_class(idim=vocab_size, odim=odim, **am_config["model"])
am.set_state_dict(paddle.load(am_ckpt)["main_params"])
am.eval()
am_mu, am_std = np.load(am_stat)
am_mu = paddle.to_tensor(am_mu)
am_std = paddle.to_tensor(am_std)
am_normalizer = ZScore(am_mu, am_std)
am_inference = am_inference_class(am_normalizer, am)
am_inference.eval()
if return_am:
return am_inference, am
else:
return am_inference
def get_voc_inference(
voc: str='pwgan_csmsc',
voc_config: Optional[os.PathLike]=None,
voc_ckpt: Optional[os.PathLike]=None,
voc_stat: Optional[os.PathLike]=None, ):
# model: {model_name}_{dataset}
voc_name = voc[:voc.rindex('_')]
voc_class = dynamic_import(voc_name, model_alias)
voc_inference_class = dynamic_import(voc_name + '_inference', model_alias)
if voc_name != 'wavernn':
voc = voc_class(**voc_config["generator_params"])
voc.set_state_dict(paddle.load(voc_ckpt)["generator_params"])
voc.remove_weight_norm()
voc.eval()
else:
voc = voc_class(**voc_config["model"])
voc.set_state_dict(paddle.load(voc_ckpt)["main_params"])
voc.eval()
voc_mu, voc_std = np.load(voc_stat)
voc_mu = paddle.to_tensor(voc_mu)
voc_std = paddle.to_tensor(voc_std)
voc_normalizer = ZScore(voc_mu, voc_std)
voc_inference = voc_inference_class(voc_normalizer, voc)
voc_inference.eval()
return voc_inference
# dygraph to static graph
def am_to_static(am_inference,
am: str='fastspeech2_csmsc',
inference_dir=Optional[os.PathLike],
speaker_dict: Optional[os.PathLike]=None):
# model: {model_name}_{dataset}
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
if am_name == 'fastspeech2':
if am_dataset in {"aishell3", "vctk", "mix",
"canton"} and speaker_dict is not None:
am_inference = jit.to_static(
am_inference,
input_spec=[
InputSpec([-1], dtype=paddle.int64),
InputSpec([1], dtype=paddle.int64),
], )
else:
am_inference = jit.to_static(
am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
elif am_name == 'speedyspeech':
if am_dataset in {"aishell3", "vctk", "mix",
"canton"} and speaker_dict is not None:
am_inference = jit.to_static(
am_inference,
input_spec=[
InputSpec([-1], dtype=paddle.int64), # text
InputSpec([-1], dtype=paddle.int64), # tone
InputSpec([1], dtype=paddle.int64), # spk_id
None # duration
])
else:
am_inference = jit.to_static(
am_inference,
input_spec=[
InputSpec([-1], dtype=paddle.int64),
InputSpec([-1], dtype=paddle.int64)
])
elif am_name == 'tacotron2':
am_inference = jit.to_static(
am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
elif am_name == 'vits' or am_name == 'jets':
if am_dataset in {"aishell3", "vctk"} and speaker_dict is not None:
am_inference = jit.to_static(
am_inference,
input_spec=[
InputSpec([-1], dtype=paddle.int64),
InputSpec([1], dtype=paddle.int64),
])
else:
am_inference = jit.to_static(
am_inference, input_spec=[InputSpec([-1], dtype=paddle.int64)])
elif am_name == 'diffsinger':
am_inference = jit.to_static(
am_inference,
input_spec=[
InputSpec([-1], dtype=paddle.int64), # phone
InputSpec([-1], dtype=paddle.int64), # note
InputSpec([-1], dtype=paddle.float32), # note_dur
InputSpec([-1], dtype=paddle.int64), # is_slur
])
jit.save(am_inference, os.path.join(inference_dir, am))
am_inference = jit.load(os.path.join(inference_dir, am))
return am_inference
def voc_to_static(voc_inference,
voc: str='pwgan_csmsc',
inference_dir=Optional[os.PathLike]):
voc_inference = jit.to_static(
voc_inference, input_spec=[
InputSpec([-1, 80], dtype=paddle.float32),
])
jit.save(voc_inference, os.path.join(inference_dir, voc))
voc_inference = jit.load(os.path.join(inference_dir, voc))
return voc_inference
# inference
def get_predictor(
model_dir: Optional[os.PathLike]=None,
model_file: Optional[os.PathLike]=None,
params_file: Optional[os.PathLike]=None,
device: str='cpu',
# for gpu
use_trt: bool=False,
device_id: int=0,
# for trt
use_dynamic_shape: bool=True,
min_subgraph_size: int=5,
# for cpu
cpu_threads: int=1,
use_mkldnn: bool=False,
# for trt or mkldnn
precision: int="fp32"):
"""
Args:
model_dir (os.PathLike): root path of model.pdmodel and model.pdiparams.
model_file (os.PathLike): name of model_file.
params_file (os.PathLike): name of params_file.
device (str): Choose the device you want to run, it can be: cpu/gpu, default is cpu.
use_trt (bool): whether to use TensorRT or not in GPU.
device_id (int): Choose your device id, only valid when the device is gpu, default 0.
use_dynamic_shape (bool): use dynamic shape or not in TensorRT.
use_mkldnn (bool): whether to use MKLDNN or not in CPU.
cpu_threads (int): num of thread when use CPU.
precision (str): mode of running (fp32/fp16/bf16/int8).
"""
rerun_flag = False
if device != "gpu" and use_trt:
raise ValueError(
"Predict by TensorRT mode: {}, expect device=='gpu', but device == {}".
format(precision, device))
config = inference.Config(
str(Path(model_dir) / model_file), str(Path(model_dir) / params_file))
config.enable_memory_optim()
config.switch_ir_optim(True)
if device == "gpu":
config.enable_use_gpu(100, device_id)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(cpu_threads)
if use_mkldnn:
# fp32
config.enable_mkldnn()
if precision == "int8":
config.enable_mkldnn_int8({
"conv2d_transpose", "conv2d", "depthwise_conv2d", "pool2d",
"transpose2", "elementwise_mul"
})
# config.enable_mkldnn_int8()
elif precision in {"fp16", "bf16"}:
config.enable_mkldnn_bfloat16()
print("MKLDNN with {}".format(precision))
if use_trt:
if precision == "bf16":
print("paddle trt does not support bf16, switching to fp16.")
precision = "fp16"
precision_map = {
"int8": inference.Config.Precision.Int8,
"fp32": inference.Config.Precision.Float32,
"fp16": inference.Config.Precision.Half,
}
assert precision in precision_map.keys()
pdtxt_name = model_file.split(".")[0] + "_" + precision + ".txt"
if use_dynamic_shape:
dynamic_shape_file = os.path.join(model_dir, pdtxt_name)
if os.path.exists(dynamic_shape_file):
config.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file,
True)
# for fastspeech2
config.exp_disable_tensorrt_ops(["reshape2"])
print("trt set dynamic shape done!")
else:
# In order to avoid memory overflow when collecting dynamic shapes, it is changed to use CPU.
config.disable_gpu()
config.set_cpu_math_library_num_threads(10)
config.collect_shape_range_info(dynamic_shape_file)
print("Start collect dynamic shape...")
rerun_flag = True
if not rerun_flag:
print("Tensor RT with {}".format(precision))
config.enable_tensorrt_engine(
workspace_size=1 << 30,
max_batch_size=1,
min_subgraph_size=min_subgraph_size,
precision_mode=precision_map[precision],
use_static=True,
use_calib_mode=False, )
predictor = inference.create_predictor(config)
return predictor
def get_am_output(input: str,
am_predictor: paddle.nn.Layer,
am: str,
frontend: object,
lang: str='zh',
merge_sentences: bool=True,
speaker_dict: Optional[os.PathLike]=None,
spk_id: int=0,
add_blank: bool=False):
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
am_input_names = am_predictor.get_input_names()
get_spk_id = False
get_tone_ids = False
if am_name == 'speedyspeech':
get_tone_ids = True
if am_dataset in {"aishell3", "vctk", "mix", "canton"} and speaker_dict:
get_spk_id = True
spk_id = np.array([spk_id])
frontend_dict = run_frontend(
frontend=frontend,
text=input,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids,
lang=lang,
add_blank=add_blank, )
if get_tone_ids:
tone_ids = frontend_dict['tone_ids']
tones = tone_ids[0].numpy()
tones_handle = am_predictor.get_input_handle(am_input_names[1])
tones_handle.reshape(tones.shape)
tones_handle.copy_from_cpu(tones)
if get_spk_id:
spk_id_handle = am_predictor.get_input_handle(am_input_names[1])
spk_id_handle.reshape(spk_id.shape)
spk_id_handle.copy_from_cpu(spk_id)
phone_ids = frontend_dict['phone_ids']
phones = phone_ids[0].numpy()
phones_handle = am_predictor.get_input_handle(am_input_names[0])
phones_handle.reshape(phones.shape)
phones_handle.copy_from_cpu(phones)
am_predictor.run()
am_output_names = am_predictor.get_output_names()
am_output_handle = am_predictor.get_output_handle(am_output_names[0])
am_output_data = am_output_handle.copy_to_cpu()
return am_output_data
def get_voc_output(voc_predictor, input):
voc_input_names = voc_predictor.get_input_names()
mel_handle = voc_predictor.get_input_handle(voc_input_names[0])
mel_handle.reshape(input.shape)
mel_handle.copy_from_cpu(input)
voc_predictor.run()
voc_output_names = voc_predictor.get_output_names()
voc_output_handle = voc_predictor.get_output_handle(voc_output_names[0])
wav = voc_output_handle.copy_to_cpu()
return wav
def get_am_sublayer_output(am_sublayer_predictor, input):
am_sublayer_input_names = am_sublayer_predictor.get_input_names()
input_handle = am_sublayer_predictor.get_input_handle(
am_sublayer_input_names[0])
input_handle.reshape(input.shape)
input_handle.copy_from_cpu(input)
am_sublayer_predictor.run()
am_sublayer_names = am_sublayer_predictor.get_output_names()
am_sublayer_handle = am_sublayer_predictor.get_output_handle(
am_sublayer_names[0])
am_sublayer_output = am_sublayer_handle.copy_to_cpu()
return am_sublayer_output
def get_streaming_am_output(input: str,
am_encoder_infer_predictor,
am_decoder_predictor,
am_postnet_predictor,
frontend,
lang: str='zh',
merge_sentences: bool=True):
get_tone_ids = False
frontend_dict = run_frontend(
frontend=frontend,
text=input,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids,
lang=lang)
phone_ids = frontend_dict['phone_ids']
phones = phone_ids[0].numpy()
am_encoder_infer_output = get_am_sublayer_output(
am_encoder_infer_predictor, input=phones)
am_decoder_output = get_am_sublayer_output(
am_decoder_predictor, input=am_encoder_infer_output)
am_postnet_output = get_am_sublayer_output(
am_postnet_predictor, input=np.transpose(am_decoder_output, (0, 2, 1)))
am_output_data = am_decoder_output + np.transpose(am_postnet_output,
(0, 2, 1))
normalized_mel = am_output_data[0]
return normalized_mel
# onnx
def get_sess(model_path: Optional[os.PathLike],
device: str='cpu',
cpu_threads: int=1,
use_trt: bool=False):
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
if 'gpu' in device.lower():
device_id = int(device.split(':')[1]) if len(
device.split(':')) == 2 else 0
# fastspeech2/mb_melgan can't use trt now!
if use_trt:
provider_name = 'TensorrtExecutionProvider'
else:
provider_name = 'CUDAExecutionProvider'
providers = [(provider_name, {'device_id': device_id})]
elif device.lower() == 'cpu':
providers = ['CPUExecutionProvider']
sess_options.intra_op_num_threads = cpu_threads
sess = ort.InferenceSession(
model_path, providers=providers, sess_options=sess_options)
return sess