You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/modules/time_reduction.py

264 lines
9.1 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""Subsampling layer definition."""
from typing import Tuple
import paddle
import paddle.nn.functional as F
from paddle import nn
from paddlespeech.s2t import masked_fill
from paddlespeech.s2t.modules.align import Conv1D
from paddlespeech.s2t.modules.conv2d import Conv2DValid
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
__all__ = [
"TimeReductionLayerStream", "TimeReductionLayer1D", "TimeReductionLayer2D"
]
class TimeReductionLayer1D(nn.Layer):
"""
Modified NeMo,
Squeezeformer Time Reduction procedure.
Downsamples the audio by `stride` in the time dimension.
Args:
channel (int): input dimension of
MultiheadAttentionMechanism and PositionwiseFeedForward
out_dim (int): Output dimension of the module.
kernel_size (int): Conv kernel size for
depthwise convolution in convolution module
stride (int): Downsampling factor in time dimension.
"""
def __init__(self,
channel: int,
out_dim: int,
kernel_size: int=5,
stride: int=2):
super(TimeReductionLayer1D, self).__init__()
self.channel = channel
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.padding = max(0, self.kernel_size - self.stride)
self.dw_conv = Conv1D(
in_channels=channel,
out_channels=channel,
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
groups=channel, )
self.pw_conv = Conv1D(
in_channels=channel,
out_channels=out_dim,
kernel_size=1,
stride=1,
padding=0,
groups=1, )
self.init_weights()
def init_weights(self):
dw_max = self.kernel_size**-0.5
pw_max = self.channel**-0.5
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
low=-dw_max, high=dw_max)
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
low=-dw_max, high=dw_max)
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
low=-pw_max, high=pw_max)
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
low=-pw_max, high=pw_max)
def forward(
self,
xs,
xs_lens: paddle.Tensor,
mask: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
mask_pad: paddle.Tensor=paddle.ones((0, 0, 0),
dtype=paddle.bool), ):
xs = xs.transpose([0, 2, 1]) # [B, C, T]
xs = masked_fill(xs, mask_pad.equal(0), 0.0)
xs = self.dw_conv(xs)
xs = self.pw_conv(xs)
xs = xs.transpose([0, 2, 1]) # [B, T, C]
B, T, D = xs.shape
mask = mask[:, ::self.stride, ::self.stride]
mask_pad = mask_pad[:, :, ::self.stride]
L = mask_pad.shape[-1]
# For JIT exporting, we remove F.pad operator.
if L - T < 0:
xs = xs[:, :L - T, :]
else:
dummy_pad = paddle.zeros([B, L - T, D], dtype=paddle.float32)
xs = paddle.concat([xs, dummy_pad], axis=1)
xs_lens = (xs_lens + 1) // 2
return xs, xs_lens, mask, mask_pad
class TimeReductionLayer2D(nn.Layer):
def __init__(self, kernel_size: int=5, stride: int=2, encoder_dim: int=256):
super(TimeReductionLayer2D, self).__init__()
self.encoder_dim = encoder_dim
self.kernel_size = kernel_size
self.dw_conv = Conv2DValid(
in_channels=encoder_dim,
out_channels=encoder_dim,
kernel_size=(kernel_size, 1),
stride=stride,
valid_trigy=True)
self.pw_conv = Conv2DValid(
in_channels=encoder_dim,
out_channels=encoder_dim,
kernel_size=1,
stride=1,
valid_trigx=False,
valid_trigy=False)
self.kernel_size = kernel_size
self.stride = stride
self.init_weights()
def init_weights(self):
dw_max = self.kernel_size**-0.5
pw_max = self.encoder_dim**-0.5
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
low=-dw_max, high=dw_max)
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
low=-dw_max, high=dw_max)
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
low=-pw_max, high=pw_max)
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
low=-pw_max, high=pw_max)
def forward(
self,
xs: paddle.Tensor,
xs_lens: paddle.Tensor,
mask: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
mask_pad: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
xs = masked_fill(xs, mask_pad.transpose([0, 2, 1]).equal(0), 0.0)
xs = xs.unsqueeze(1)
padding1 = self.kernel_size - self.stride
xs = F.pad(
xs, (0, 0, 0, 0, 0, padding1, 0, 0), mode='constant', value=0.)
xs = self.dw_conv(xs.transpose([0, 3, 2, 1]))
xs = self.pw_conv(xs).transpose([0, 3, 2, 1]).squeeze(1)
tmp_length = xs.shape[1]
xs_lens = (xs_lens + 1) // 2
padding2 = max(0, (xs_lens.max() - tmp_length).item())
batch_size, hidden = xs.shape[0], xs.shape[-1]
dummy_pad = paddle.zeros(
[batch_size, padding2, hidden], dtype=paddle.float32)
xs = paddle.concat([xs, dummy_pad], axis=1)
mask = mask[:, ::2, ::2]
mask_pad = mask_pad[:, :, ::2]
return xs, xs_lens, mask, mask_pad
class TimeReductionLayerStream(nn.Layer):
"""
Squeezeformer Time Reduction procedure.
Downsamples the audio by `stride` in the time dimension.
Args:
channel (int): input dimension of
MultiheadAttentionMechanism and PositionwiseFeedForward
out_dim (int): Output dimension of the module.
kernel_size (int): Conv kernel size for
depthwise convolution in convolution module
stride (int): Downsampling factor in time dimension.
"""
def __init__(self,
channel: int,
out_dim: int,
kernel_size: int=1,
stride: int=2):
super(TimeReductionLayerStream, self).__init__()
self.channel = channel
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.dw_conv = Conv1D(
in_channels=channel,
out_channels=channel,
kernel_size=kernel_size,
stride=stride,
padding=0,
groups=channel)
self.pw_conv = Conv1D(
in_channels=channel,
out_channels=out_dim,
kernel_size=1,
stride=1,
padding=0,
groups=1)
self.init_weights()
def init_weights(self):
dw_max = self.kernel_size**-0.5
pw_max = self.channel**-0.5
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
low=-dw_max, high=dw_max)
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
low=-dw_max, high=dw_max)
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
low=-pw_max, high=pw_max)
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
low=-pw_max, high=pw_max)
def forward(
self,
xs,
xs_lens: paddle.Tensor,
mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool)):
xs = xs.transpose([0, 2, 1]) # [B, C, T]
xs = masked_fill(xs, mask_pad.equal(0), 0.0)
xs = self.dw_conv(xs)
xs = self.pw_conv(xs)
xs = xs.transpose([0, 2, 1]) # [B, T, C]
B, T, D = xs.shape
mask = mask[:, ::self.stride, ::self.stride]
mask_pad = mask_pad[:, :, ::self.stride]
L = mask_pad.shape[-1]
# For JIT exporting, we remove F.pad operator.
if L - T < 0:
xs = xs[:, :L - T, :]
else:
dummy_pad = paddle.zeros([B, L - T, D], dtype=paddle.float32)
xs = paddle.concat([xs, dummy_pad], axis=1)
xs_lens = (xs_lens + 1) // 2
return xs, xs_lens, mask, mask_pad