You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/tiny/asr1
Shuangchi He 8c7859d3bc
Fix some typos. (#3178)
2 years ago
..
conf
local
.gitignore
README.md Fix some typos. (#3178) 2 years ago
path.sh
run.sh

README.md

Transformer/Conformer ASR with Tiny

This example contains code used to train a u2 model (Transformer or Conformer model) with Tiny dataset(a part of [Librispeech dataset](http://www.openslr.org/resources/33))

Overview

All the scripts you need are in run.sh. There are several stages in run.sh, and each stage has its function.

Stage Function
0 Process data. It includes:
(1) Download the dataset
(2) Calculate the CMVN of the train dataset
(3) Get the vocabulary file
(4) Get the manifest files of the train, development and test dataset
(5) Get the sentencepiece model
1 Train the model
2 Get the final model by averaging the top-k models, set k = 1 means to choose the best model
3 Test the final model performance
4 Get ctc alignment of test data using the final model

You can choose to run a range of stages by setting stage and stop_stage.

For example, if you want to execute the code in stage 2 and stage 3, you can run this script:

bash run.sh --stage 2 --stop_stage 3

Or you can set stage equal to stop-stage to only run one stage. For example, if you only want to run stage 0, you can use the script below:

bash run.sh --stage 0 --stop_stage 0

The document below will describe the scripts in run.shin detail.

The Environment Variables

The path.sh contains the environment variables.

. ./path.sh
. ./cmd.sh

This script needs to be run first. And another script is also needed:

source ${MAIN_ROOT}/utils/parse_options.sh

It will support the way of using --variable value in the shell scripts.

The Local Variables

Some local variables are set in run.sh. gpus denotes the GPU number you want to use. If you set gpus=, it means you only use CPU. stage denotes the number of stage you want the start from in the experiments. stop stage denotes the number of stage you want the stop at in the experiments. conf_path denotes the config path of the model. avg_numdenotes the number K of top-K models you want to average to get the final model. ckpt denotes the checkpoint prefix of the model, e.g. "transformerr" Youtransformer local variables (except ckpt) when you use run.sh For example, you can set the gpus and avg_num when you use the command line.:

bash run.sh --gpus 0,1 --avg_num 1

Stage 0: Data Processing

To use this example, you need to process data firstly and you can use stage 0 in run.shto do this. The code is shown below:

 if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
     # prepare data
     bash ./local/data.sh || exit -1
 fi

Stage 0 is for processing the data.

If you only want to process the data. You can run

bash run.sh --stage 0 --stop_stage 0

You can also just run these scripts in your command line.

. ./path.sh
. ./cmd.sh
bash ./local/data.sh

After processing the data, the data directory will look like this:

data/
|-- dev.meta
|-- lang_char
|   `-- bpe_unigram_200.model
|   `-- bpe_unigram_200.vocab
|   `-- vocab.txt
|-- manifest.dev
|-- manifest.dev.raw
|-- manifest.test
|-- manifest.test.raw
|-- manifest.train
|-- manifest.train.raw
|-- mean_std.json
|-- test.meta
`-- train.meta

Stage 1: Model Training

If you want to train the model. you can use stage 1 in run.sh. The code is shown below.

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
     # train model, all `ckpt` under `exp` dir
     CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt}
 fi

If you want to train the model, you can use the script below to execute stage 0 and stage 1:

bash run.sh --stage 0 --stop_stage 1

or you can run these scripts in the command line (only use CPU).

. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/transformer.yaml transformer
```## Stage 2: Top-k Models Averaging
After training the model, we need to get the final model for testing and inference. In every epoch, the model checkpoint is saved, so we can choose the best model from them based on the validation loss or we can sort them and average the parameters of the top-k models to get the final model. We can use stage 2 to do this, and the code is shown below:
```bash
 if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
     # avg n best model
     avg.sh best exp/${ckpt}/checkpoints ${avg_num}
 fi

The avg.sh is in the ../../../utils/ which is define in the path.sh. If you want to get the final model, you can use the script below to execute stage 0, stage 1, and stage 2:

bash run.sh --stage 0 --stop_stage 2

or you can run these scripts in the command line (only use CPU).

. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/transformer.yaml transformer
avg.sh best exp/transformer/checkpoints 1

Stage 3: Model Testing

The test stage is to evaluate the model performance. The code of test stage is shown below:

 if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
     # test ckpt avg_n
     CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
 fi

If you want to train a model and test it, you can use the script below to execute stage 0, stage 1, stage 2, and stage 3 :

bash run.sh --stage 0 --stop_stage 3

or you can run these scripts in the command line (only use CPU).

. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/transformer.yaml transformer
avg.sh best exp/transformer/checkpoints 1
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/transformer.yaml exp/transformer/checkpoints/avg_1

Stage 4: CTC Alignment

If you want to get the alignment between the audio and the text, you can use the ctc alignment. The code of this stage is shown below:

 if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
     # ctc alignment of test data
     CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
 fi

If you want to train the model, test it and do the alignment, you can use the script below to execute stage 0, stage 1, stage 2, and stage 3 :

bash run.sh --stage 0 --stop_stage 4

or if you only need to train a model and do the alignment, you can use these scripts to escape stage 3 (test stage):

bash run.sh --stage 0 --stop_stage 2
bash run.sh --stage 4 --stop_stage 4

or you can also use these scripts in the command line (only use CPU).

. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/transformer.yaml transformer
avg.sh best exp/transformer/checkpoints 1
# test stage is optional
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/transformer.yaml exp/transformer/checkpoints/avg_1
CUDA_VISIBLE_DEVICES= ./local/align.sh conf/transformer.yaml exp/transformer/checkpoints/avg_1