Hui Zhang
6b4d1f80ac
|
1 year ago | |
---|---|---|
.. | ||
conf | 2 years ago | |
local | 1 year ago | |
README.md | 2 years ago | |
path.sh | 2 years ago | |
run.sh | 2 years ago |
README.md
JETS with CSMSC
This example contains code used to train a JETS model with Chinese Standard Mandarin Speech Copus.
Dataset
Download and Extract
Download CSMSC from it's Official Website.
Get MFA Result and Extract
We use MFA to get phonemes and durations for JETS. You can download from here baker_alignment_tone.tar.gz, or train your MFA model reference to mfa example of our repo.
Get Started
Assume the path to the dataset is ~/datasets/BZNSYP
.
Assume the path to the MFA result of CSMSC is ./baker_alignment_tone
.
Run the command below to
- source path.
- preprocess the dataset.
- train the model.
- synthesize wavs.
- synthesize waveform from
metadata.jsonl
. - synthesize waveform from a text file.
- synthesize waveform from
./run.sh
You can choose a range of stages you want to run, or set stage
equal to stop-stage
to use only one stage, for example, running the following command will only preprocess the dataset.
./run.sh --stage 0 --stop-stage 0
Data Preprocessing
./local/preprocess.sh ${conf_path}
When it is done. A dump
folder is created in the current directory. The structure of the dump folder is listed below.
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── feats_stats.npy
├── norm
└── raw
The dataset is split into 3 parts, namely train
, dev
, and test
, each of which contains a norm
and raw
subfolder. The raw folder contains wave、mel spectrogram、speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in dump/train/feats_stats.npy
.
Also, there is a metadata.jsonl
in each subfolder. It is a table-like file that contains phones, text_lengths, the path of feats, feats_lengths, the path of pitch features, the path of energy features, the path of raw waves, speaker, and the id of each utterance.
Model Training
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
./local/train.sh
calls ${BIN_DIR}/train.py
.
Here's the complete help message.
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
Train a JETS model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG config file to overwrite default config.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
--config
is a config file in yaml format to overwrite the default config, which can be found atconf/default.yaml
.--train-metadata
and--dev-metadata
should be the metadata file in the normalized subfolder oftrain
anddev
in thedump
folder.--output-dir
is the directory to save the results of the experiment. Checkpoints are saved incheckpoints/
inside this directory.--ngpu
is the number of gpus to use, if ngpu == 0, use cpu.--phones-dict
is the path of the phone vocabulary file.
Synthesizing
./local/synthesize.sh
calls ${BIN_DIR}/synthesize.py
, which can synthesize waveform from metadata.jsonl
.
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
./local/synthesize_e2e.sh
calls ${BIN_DIR}/synthesize_e2e.py
, which can synthesize waveform from text file.
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
Pretrained Model
The pretrained model can be downloaded here:
The static model can be downloaded here: