You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.5 KiB
162 lines
5.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""ASR Interface module."""
|
|
import argparse
|
|
|
|
from deepspeech.utils.dynamic_import import dynamic_import
|
|
|
|
|
|
class ASRInterface:
|
|
"""ASR Interface model implementation."""
|
|
|
|
@staticmethod
|
|
def add_arguments(parser):
|
|
"""Add arguments to parser."""
|
|
return parser
|
|
|
|
@classmethod
|
|
def build(cls, idim: int, odim: int, **kwargs):
|
|
"""Initialize this class with python-level args.
|
|
|
|
Args:
|
|
idim (int): The number of an input feature dim.
|
|
odim (int): The number of output vocab.
|
|
|
|
Returns:
|
|
ASRinterface: A new instance of ASRInterface.
|
|
|
|
"""
|
|
args = argparse.Namespace(**kwargs)
|
|
return cls(idim, odim, args)
|
|
|
|
def forward(self, xs, ilens, ys, olens):
|
|
"""Compute loss for training.
|
|
|
|
:param xs: batch of padded source sequences paddle.Tensor (B, Tmax, idim)
|
|
:param ilens: batch of lengths of source sequences (B), paddle.Tensor
|
|
:param ys: batch of padded target sequences paddle.Tensor (B, Lmax)
|
|
:param olens: batch of lengths of target sequences (B), paddle.Tensor
|
|
:return: loss value
|
|
:rtype: paddle.Tensor
|
|
"""
|
|
raise NotImplementedError("forward method is not implemented")
|
|
|
|
def recognize(self, x, recog_args, char_list=None, rnnlm=None):
|
|
"""Recognize x for evaluation.
|
|
|
|
:param ndarray x: input acouctic feature (B, T, D) or (T, D)
|
|
:param namespace recog_args: argment namespace contraining options
|
|
:param list char_list: list of characters
|
|
:param paddle.nn.Layer rnnlm: language model module
|
|
:return: N-best decoding results
|
|
:rtype: list
|
|
"""
|
|
raise NotImplementedError("recognize method is not implemented")
|
|
|
|
def recognize_batch(self, x, recog_args, char_list=None, rnnlm=None):
|
|
"""Beam search implementation for batch.
|
|
|
|
:param paddle.Tensor x: encoder hidden state sequences (B, Tmax, Henc)
|
|
:param namespace recog_args: argument namespace containing options
|
|
:param list char_list: list of characters
|
|
:param paddle.nn.Module rnnlm: language model module
|
|
:return: N-best decoding results
|
|
:rtype: list
|
|
"""
|
|
raise NotImplementedError("Batch decoding is not supported yet.")
|
|
|
|
def calculate_all_attentions(self, xs, ilens, ys):
|
|
"""Calculate attention.
|
|
|
|
:param list xs: list of padded input sequences [(T1, idim), (T2, idim), ...]
|
|
:param ndarray ilens: batch of lengths of input sequences (B)
|
|
:param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...]
|
|
:return: attention weights (B, Lmax, Tmax)
|
|
:rtype: float ndarray
|
|
"""
|
|
raise NotImplementedError(
|
|
"calculate_all_attentions method is not implemented")
|
|
|
|
def calculate_all_ctc_probs(self, xs, ilens, ys):
|
|
"""Calculate CTC probability.
|
|
|
|
:param list xs_pad: list of padded input sequences [(T1, idim), (T2, idim), ...]
|
|
:param ndarray ilens: batch of lengths of input sequences (B)
|
|
:param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...]
|
|
:return: CTC probabilities (B, Tmax, vocab)
|
|
:rtype: float ndarray
|
|
"""
|
|
raise NotImplementedError(
|
|
"calculate_all_ctc_probs method is not implemented")
|
|
|
|
@property
|
|
def attention_plot_class(self):
|
|
"""Get attention plot class."""
|
|
from deepspeech.training.extensions.plot import PlotAttentionReport
|
|
|
|
return PlotAttentionReport
|
|
|
|
@property
|
|
def ctc_plot_class(self):
|
|
"""Get CTC plot class."""
|
|
from deepspeech.training.extensions.plot import PlotCTCReport
|
|
|
|
return PlotCTCReport
|
|
|
|
def get_total_subsampling_factor(self):
|
|
"""Get total subsampling factor."""
|
|
raise NotImplementedError(
|
|
"get_total_subsampling_factor method is not implemented")
|
|
|
|
def encode(self, feat):
|
|
"""Encode feature in `beam_search` (optional).
|
|
|
|
Args:
|
|
x (numpy.ndarray): input feature (T, D)
|
|
Returns:
|
|
paddle.Tensor: encoded feature (T, D)
|
|
"""
|
|
raise NotImplementedError("encode method is not implemented")
|
|
|
|
def scorers(self):
|
|
"""Get scorers for `beam_search` (optional).
|
|
|
|
Returns:
|
|
dict[str, ScorerInterface]: dict of `ScorerInterface` objects
|
|
|
|
"""
|
|
raise NotImplementedError("decoders method is not implemented")
|
|
|
|
|
|
predefined_asr = {
|
|
"transformer": "deepspeech.models.u2:U2Model",
|
|
"conformer": "deepspeech.models.u2:U2Model",
|
|
}
|
|
|
|
|
|
def dynamic_import_asr(module):
|
|
"""Import ASR models dynamically.
|
|
|
|
Args:
|
|
module (str): asr name. e.g., transformer, conformer
|
|
|
|
Returns:
|
|
type: ASR class
|
|
|
|
"""
|
|
model_class = dynamic_import(module, predefined_asr)
|
|
assert issubclass(model_class,
|
|
ASRInterface), f"{module} does not implement ASRInterface"
|
|
return model_class
|