You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.8 KiB
190 lines
6.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
"""Tacotron2 encoder related modules."""
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
|
|
class Encoder(nn.Layer):
|
|
"""Encoder module of Spectrogram prediction network.
|
|
|
|
This is a module of encoder of Spectrogram prediction network in Tacotron2,
|
|
which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel
|
|
Spectrogram Predictions`_. This is the encoder which converts either a sequence
|
|
of characters or acoustic features into the sequence of hidden states.
|
|
|
|
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
|
https://arxiv.org/abs/1712.05884
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
idim,
|
|
input_layer="embed",
|
|
embed_dim=512,
|
|
elayers=1,
|
|
eunits=512,
|
|
econv_layers=3,
|
|
econv_chans=512,
|
|
econv_filts=5,
|
|
use_batch_norm=True,
|
|
use_residual=False,
|
|
dropout_rate=0.5,
|
|
padding_idx=0, ):
|
|
"""Initialize Tacotron2 encoder module.
|
|
Args:
|
|
idim (int):
|
|
Dimension of the inputs.
|
|
input_layer (str):
|
|
Input layer type.
|
|
embed_dim (int, optional):
|
|
Dimension of character embedding.
|
|
elayers (int, optional):
|
|
The number of encoder blstm layers.
|
|
eunits (int, optional):
|
|
The number of encoder blstm units.
|
|
econv_layers (int, optional):
|
|
The number of encoder conv layers.
|
|
econv_filts (int, optional):
|
|
The number of encoder conv filter size.
|
|
econv_chans (int, optional):
|
|
The number of encoder conv filter channels.
|
|
use_batch_norm (bool, optional):
|
|
Whether to use batch normalization.
|
|
use_residual (bool, optional):
|
|
Whether to use residual connection.
|
|
dropout_rate (float, optional):
|
|
Dropout rate.
|
|
|
|
"""
|
|
super().__init__()
|
|
# store the hyperparameters
|
|
self.idim = idim
|
|
self.use_residual = use_residual
|
|
|
|
# define network layer modules
|
|
if input_layer == "linear":
|
|
self.embed = nn.Linear(idim, econv_chans)
|
|
elif input_layer == "embed":
|
|
self.embed = nn.Embedding(idim, embed_dim, padding_idx=padding_idx)
|
|
else:
|
|
raise ValueError("unknown input_layer: " + input_layer)
|
|
|
|
if econv_layers > 0:
|
|
self.convs = nn.LayerList()
|
|
for layer in range(econv_layers):
|
|
ichans = (embed_dim if layer == 0 and input_layer == "embed"
|
|
else econv_chans)
|
|
if use_batch_norm:
|
|
self.convs.append(
|
|
nn.Sequential(
|
|
nn.Conv1D(
|
|
ichans,
|
|
econv_chans,
|
|
econv_filts,
|
|
stride=1,
|
|
padding=(econv_filts - 1) // 2,
|
|
bias_attr=False, ),
|
|
nn.BatchNorm1D(econv_chans),
|
|
nn.ReLU(),
|
|
nn.Dropout(dropout_rate), ))
|
|
else:
|
|
self.convs += [
|
|
nn.Sequential(
|
|
nn.Conv1D(
|
|
ichans,
|
|
econv_chans,
|
|
econv_filts,
|
|
stride=1,
|
|
padding=(econv_filts - 1) // 2,
|
|
bias_attr=False, ),
|
|
nn.ReLU(),
|
|
nn.Dropout(dropout_rate), )
|
|
]
|
|
else:
|
|
self.convs = None
|
|
if elayers > 0:
|
|
iunits = econv_chans if econv_layers != 0 else embed_dim
|
|
# batch_first=True, bidirectional=True
|
|
self.blstm = nn.LSTM(
|
|
iunits,
|
|
eunits // 2,
|
|
elayers,
|
|
time_major=False,
|
|
direction='bidirectional',
|
|
bias_ih_attr=True,
|
|
bias_hh_attr=True)
|
|
self.blstm.flatten_parameters()
|
|
else:
|
|
self.blstm = None
|
|
|
|
# # initialize
|
|
# self.apply(encoder_init)
|
|
|
|
def forward(self, xs, ilens=None):
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
xs (Tensor):
|
|
Batch of the padded sequence. Either character ids (B, Tmax)
|
|
or acoustic feature (B, Tmax, idim * encoder_reduction_factor).
|
|
Padded value should be 0.
|
|
ilens (Tensor(int64)):
|
|
Batch of lengths of each input batch (B,).
|
|
|
|
Returns:
|
|
Tensor:
|
|
Batch of the sequences of encoder states(B, Tmax, eunits).
|
|
Tensor(int64):
|
|
Batch of lengths of each sequence (B,)
|
|
"""
|
|
xs = self.embed(xs).transpose([0, 2, 1])
|
|
if self.convs is not None:
|
|
for i in range(len(self.convs)):
|
|
if self.use_residual:
|
|
xs += self.convs[i](xs)
|
|
else:
|
|
xs = self.convs[i](xs)
|
|
if self.blstm is None:
|
|
return xs.transpose([0, 2, 1])
|
|
if not isinstance(ilens, paddle.Tensor):
|
|
ilens = paddle.to_tensor(ilens)
|
|
xs = xs.transpose([0, 2, 1])
|
|
# for dygraph to static graph
|
|
# self.blstm.flatten_parameters()
|
|
# (B, Tmax, C)
|
|
# see https://www.paddlepaddle.org.cn/documentation/docs/zh/faq/train_cn.html#paddletorch-nn-utils-rnn-pack-padded-sequencetorch-nn-utils-rnn-pad-packed-sequenceapi
|
|
xs, _ = self.blstm(xs, sequence_length=ilens)
|
|
hlens = ilens
|
|
|
|
return xs, hlens
|
|
|
|
def inference(self, x):
|
|
"""Inference.
|
|
|
|
Args:
|
|
x (Tensor):
|
|
The sequeunce of character ids (T,) or acoustic feature (T, idim * encoder_reduction_factor).
|
|
|
|
Returns:
|
|
Tensor: The sequences of encoder states(T, eunits).
|
|
|
|
"""
|
|
xs = x.unsqueeze(0)
|
|
ilens = paddle.shape(x)[0]
|
|
|
|
return self.forward(xs, ilens)[0][0]
|