You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.5 KiB
74 lines
2.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
import yaml
|
|
from paddle.audio.features import LogMelSpectrogram
|
|
from paddleaudio.backends import soundfile_load as load_audio
|
|
from paddleaudio.utils import logger
|
|
|
|
from paddlespeech.cls.models import SoundClassifier
|
|
from paddlespeech.utils.dynamic_import import dynamic_import
|
|
#from paddleaudio.features import LogMelSpectrogram
|
|
|
|
# yapf: disable
|
|
parser = argparse.ArgumentParser(__doc__)
|
|
parser.add_argument("--cfg_path", type=str, required=True)
|
|
args = parser.parse_args()
|
|
# yapf: enable
|
|
|
|
|
|
def extract_features(file: str, **feat_conf) -> paddle.Tensor:
|
|
file = os.path.abspath(os.path.expanduser(file))
|
|
waveform, _ = load_audio(file, sr=feat_conf['sr'])
|
|
feature_extractor = LogMelSpectrogram(**feat_conf)
|
|
feat = feature_extractor(paddle.to_tensor(waveform).unsqueeze(0))
|
|
feat = paddle.transpose(feat, [0, 2, 1])
|
|
return feat
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
args.cfg_path = os.path.abspath(os.path.expanduser(args.cfg_path))
|
|
with open(args.cfg_path, 'r') as f:
|
|
config = yaml.safe_load(f)
|
|
|
|
model_conf = config['model']
|
|
data_conf = config['data']
|
|
feat_conf = config['feature']
|
|
predicting_conf = config['predicting']
|
|
|
|
ds_class = dynamic_import(data_conf['dataset'])
|
|
backbone_class = dynamic_import(model_conf['backbone'])
|
|
|
|
model = SoundClassifier(
|
|
backbone=backbone_class(pretrained=False, extract_embedding=True),
|
|
num_class=len(ds_class.label_list))
|
|
model.set_state_dict(paddle.load(predicting_conf['checkpoint']))
|
|
model.eval()
|
|
|
|
feat = extract_features(predicting_conf['audio_file'], **feat_conf)
|
|
logits = model(feat)
|
|
probs = F.softmax(logits, axis=1).numpy()
|
|
|
|
sorted_indices = (-probs[0]).argsort()
|
|
|
|
msg = f"[{predicting_conf['audio_file']}]\n"
|
|
for idx in sorted_indices[:predicting_conf['top_k']]:
|
|
msg += f'{ds_class.label_list[idx]}: {probs[0][idx]}\n'
|
|
logger.info(msg)
|