You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/data/librispeech/librispeech.py

147 lines
5.5 KiB

"""Prepare Librispeech ASR datasets.
Download, unpack and create manifest files.
Manifest file is a json-format file with each line containing the
meta data (i.e. audio filepath, transcript and audio duration)
of each audio file in the data set.
"""
import distutils.util
import os
import sys
import argparse
import soundfile
import json
import codecs
import io
from data_utils.utility import download, unpack
URL_ROOT = "http://www.openslr.org/resources/12"
URL_ROOT = "https://openslr.magicdatatech.com/resources/12"
URL_TEST_CLEAN = URL_ROOT + "/test-clean.tar.gz"
URL_TEST_OTHER = URL_ROOT + "/test-other.tar.gz"
URL_DEV_CLEAN = URL_ROOT + "/dev-clean.tar.gz"
URL_DEV_OTHER = URL_ROOT + "/dev-other.tar.gz"
URL_TRAIN_CLEAN_100 = URL_ROOT + "/train-clean-100.tar.gz"
URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz"
URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz"
MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9"
MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135"
MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1"
MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931"
MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa"
MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708"
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--target_dir",
default='~/.cache/paddle/dataset/speech/libri',
type=str,
help="Directory to save the dataset. (default: %(default)s)")
parser.add_argument(
"--manifest_prefix",
default="manifest",
type=str,
help="Filepath prefix for output manifests. (default: %(default)s)")
parser.add_argument(
"--full_download",
default="True",
type=distutils.util.strtobool,
help="Download all datasets for Librispeech."
" If False, only download a minimal requirement (test-clean, dev-clean"
" train-clean-100). (default: %(default)s)")
args = parser.parse_args()
def create_manifest(data_dir, manifest_path):
"""Create a manifest json file summarizing the data set, with each line
containing the meta data (i.e. audio filepath, transcription text, audio
duration) of each audio file within the data set.
"""
print("Creating manifest %s ..." % manifest_path)
json_lines = []
for subfolder, _, filelist in sorted(os.walk(data_dir)):
text_filelist = [
filename for filename in filelist if filename.endswith('trans.txt')
]
if len(text_filelist) > 0:
text_filepath = os.path.join(subfolder, text_filelist[0])
for line in io.open(text_filepath, encoding="utf8"):
segments = line.strip().split()
text = ' '.join(segments[1:]).lower()
audio_filepath = os.path.join(subfolder, segments[0] + '.flac')
audio_data, samplerate = soundfile.read(audio_filepath)
duration = float(len(audio_data)) / samplerate
json_lines.append(
json.dumps({
'audio_filepath': audio_filepath,
'duration': duration,
'text': text
}))
with codecs.open(manifest_path, 'w', 'utf-8') as out_file:
for line in json_lines:
out_file.write(line + '\n')
def prepare_dataset(url, md5sum, target_dir, manifest_path):
"""Download, unpack and create summmary manifest file.
"""
if not os.path.exists(os.path.join(target_dir, "LibriSpeech")):
# download
filepath = download(url, md5sum, target_dir)
# unpack
unpack(filepath, target_dir)
else:
print("Skip downloading and unpacking. Data already exists in %s." %
target_dir)
# create manifest json file
create_manifest(target_dir, manifest_path)
def main():
if args.target_dir.startswith('~'):
args.target_dir = os.path.expanduser(args.target_dir)
prepare_dataset(
url=URL_TEST_CLEAN,
md5sum=MD5_TEST_CLEAN,
target_dir=os.path.join(args.target_dir, "test-clean"),
manifest_path=args.manifest_prefix + ".test-clean")
prepare_dataset(
url=URL_DEV_CLEAN,
md5sum=MD5_DEV_CLEAN,
target_dir=os.path.join(args.target_dir, "dev-clean"),
manifest_path=args.manifest_prefix + ".dev-clean")
if args.full_download:
prepare_dataset(
url=URL_TRAIN_CLEAN_100,
md5sum=MD5_TRAIN_CLEAN_100,
target_dir=os.path.join(args.target_dir, "train-clean-100"),
manifest_path=args.manifest_prefix + ".train-clean-100")
prepare_dataset(
url=URL_TEST_OTHER,
md5sum=MD5_TEST_OTHER,
target_dir=os.path.join(args.target_dir, "test-other"),
manifest_path=args.manifest_prefix + ".test-other")
prepare_dataset(
url=URL_DEV_OTHER,
md5sum=MD5_DEV_OTHER,
target_dir=os.path.join(args.target_dir, "dev-other"),
manifest_path=args.manifest_prefix + ".dev-other")
prepare_dataset(
url=URL_TRAIN_CLEAN_360,
md5sum=MD5_TRAIN_CLEAN_360,
target_dir=os.path.join(args.target_dir, "train-clean-360"),
manifest_path=args.manifest_prefix + ".train-clean-360")
prepare_dataset(
url=URL_TRAIN_OTHER_500,
md5sum=MD5_TRAIN_OTHER_500,
target_dir=os.path.join(args.target_dir, "train-other-500"),
manifest_path=args.manifest_prefix + ".train-other-500")
if __name__ == '__main__':
main()