masimeng1994
5e2251afda
|
2 years ago | |
---|---|---|
.. | ||
conf | 2 years ago | |
local | 2 years ago | |
vad-android-demo | 2 years ago | |
.gitignore | 2 years ago | |
README.md | 2 years ago | |
path.sh | 2 years ago | |
run.sh | 2 years ago | |
utils | 2 years ago |
README.md
Silero VAD - pre-trained enterprise-grade Voice Activity Detector
This directory provides VAD models on CPU/GPU.
VAD Interface
For vad interface please see .
Create Handdle
PPSHandle_t PPSVadCreateInstance(const char* conf_path);
Destroy Handdle
int PPSVadDestroyInstance(PPSHandle_t instance);
Reset Vad State
int PPSVadReset(PPSHandle_t instance);
Reset Vad state before processing next wav
.
Get Chunk Size
int PPSVadChunkSizeSamples(PPSHandle_t instance);
This API will return chunk size in sample
unit.
When do forward, we need feed chunk size
samples, except last chunk.
Vad Forward
PPSVadState_t PPSVadFeedForward(PPSHandle_t instance,
float* chunk,
int num_element);
Vad has below states:
typedef enum {
PPS_VAD_ILLEGAL = 0, // error
PPS_VAD_SIL, // silence
PPS_VAD_START, // start speech
PPS_VAD_SPEECH, // in speech
PPS_VAD_END, // end speech
PPS_VAD_NUMSTATES, // number of states
} PPSVadState_t;
If PPSVadFeedForward
occur an error will return PPS_VAD_ILLEGAL
state.
Linux
Build Runtime
# cd /path/to/paddlespeech/runtime
cmake -B build -DBUILD_SHARED_LIBS=OFF -DWITH_ASR=OFF -DWITH_CLS=OFF -DWITH_VAD=ON
cmake --build build
Since VAD using FastDeploy runtime, if you have another FastDeploy Library, you can using this command to build:
# cd /path/to/paddlespeech/runtime
cmake -B build -DBUILD_SHARED_LIBS=OFF -DWITH_ASR=OFF -DWITH_CLS=OFF -DWITH_VAD=ON -DFASTDEPLOY_INSTALL_DIR=/workspace//paddle/FastDeploy/build/Linux/x86_64/install
cmake --build build
DFASTDEPLOY_INSTALL_DIR
is the directory of FastDeploy Library.
Run Demo
After building success, we can do this to run demo under this example dir:
bash run.sh
The output like these:
/workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(88)::SetConfig sr=16 threshold=0.5 beam=0.15 frame_ms=32 min_silence_duration_ms=200 speech_pad_left_ms=0 speech_pad_right_ms=0[INFO] fastdeploy/runtime/runtime.cc(293)::CreateOrtBackend Runtime initialized with Backend::ORT in Device::CPU./workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(137)::Initialize init done.[SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [STA] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SPE] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [END] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL] [SIL]
RTF=0.00774591
speak start: 0.32 s, end: 2.464 s | speak start: 3.296 s, end: 4.64 s | speak start: 5.408 s, end: 7.872 s | speak start: 8.192 s, end: 10.72 s
vad_nnet_main done!
sr = 16000
frame_ms = 32
threshold = 0.5
beam = 0.15
min_silence_duration_ms = 200
speech_pad_left_ms = 0
speech_pad_right_ms = 0
model_path = ./data/silero_vad/silero_vad.onnx
param_path = (default)num_cpu_thread = 1(default)/workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(88)::SetConfig sr=16 threshold=0.5 beam=0.15 frame_ms=32 min_silence_duration_ms=200 speech_pad_left_ms=0 speech_pad_right_ms=0[INFO] fastdeploy/runtime/runtime.cc(293)::CreateOrtBackend Runtime initialized with Backend::ORT in Device::CPU./workspace//PaddleSpeech/runtime/engine/vad/nnet/vad.cc(137)::Initialize init done.
1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1
RTF=0.00778218
vad_interface_main done!
Android
When to using on Android, please setup your NDK
enverment before, then do as below:
# cd /path/to/paddlespeech/runtime
bash build_android.sh
Result
Arch | RTF | Runtime Size |
---|---|---|
x86_64 | 0.00778218 | |
arm64-v8a | 0.00744745 | ~10.532MB |
Machine Information
x86_64
The environment as below:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
Stepping: 7
CPU MHz: 2599.998
BogoMIPS: 5199.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat umip pku ospke avx512_vnni spec_ctrl arch_capabilities
arm64-v8a
Processor : AArch64 Processor rev 14 (aarch64)
processor : 0
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x805
CPU revision : 14
processor : 1
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x805
CPU revision : 14
processor : 2
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x805
CPU revision : 14
processor : 3
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x805
CPU revision : 14
processor : 4
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x804
CPU revision : 14
processor : 5
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x804
CPU revision : 14
processor : 6
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x804
CPU revision : 14
processor : 7
BogoMIPS : 38.40
Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop
CPU implementer : 0x51
CPU architecture: 8
CPU variant : 0xd
CPU part : 0x804
CPU revision : 14
Hardware : Qualcomm Technologies, Inc SM8150
Download Pre-trained ONNX Model
For developers' testing, model exported by VAD are provided below. Developers can download them directly.
模型 | 大小 | 备注 |
---|---|---|
silero-vad | 1.8MB | This model file is sourced from snakers4/silero-vad,MIT License |
FastDeploy Runtime
For FastDeploy software and hardware requements, and pre-released library please to see FastDeploy: