You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/datasets/vocoder_batch_fn.py

221 lines
8.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from paddlespeech.t2s.audio.codec import encode_mu_law
from paddlespeech.t2s.audio.codec import float_2_label
from paddlespeech.t2s.audio.codec import label_2_float
class Clip(object):
"""Collate functor for training vocoders.
"""
def __init__(
self,
batch_max_steps=20480,
hop_size=256,
aux_context_window=0, ):
"""Initialize customized collater for DataLoader.
Args:
batch_max_steps (int): The maximum length of input signal in batch.
hop_size (int): Hop size of auxiliary features.
aux_context_window (int): Context window size for auxiliary feature conv.
"""
if batch_max_steps % hop_size != 0:
batch_max_steps += -(batch_max_steps % hop_size)
assert batch_max_steps % hop_size == 0
self.batch_max_steps = batch_max_steps
self.batch_max_frames = batch_max_steps // hop_size
self.hop_size = hop_size
self.aux_context_window = aux_context_window
# set useful values in random cutting
self.start_offset = aux_context_window
self.end_offset = -(self.batch_max_frames + aux_context_window)
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
def __call__(self, batch):
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns:
Tensor:
Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
Tensor:
Target signal batch (B, 1, T).
"""
# check length
batch = [
self._adjust_length(b['wave'], b['feats']) for b in batch
if b['feats'].shape[0] > self.mel_threshold
]
xs, cs = [b[0] for b in batch], [b[1] for b in batch]
# make batch with random cut
c_lengths = [c.shape[0] for c in cs]
start_frames = np.array([
np.random.randint(self.start_offset, cl + self.end_offset)
for cl in c_lengths
])
x_starts = start_frames * self.hop_size
x_ends = x_starts + self.batch_max_steps
c_starts = start_frames - self.aux_context_window
c_ends = start_frames + self.batch_max_frames + self.aux_context_window
y_batch = np.stack(
[x[start:end] for x, start, end in zip(xs, x_starts, x_ends)])
c_batch = np.stack(
[c[start:end] for c, start, end in zip(cs, c_starts, c_ends)])
# convert each batch to tensor, assume that each item in batch has the same length
y_batch = paddle.to_tensor(
y_batch, dtype=paddle.float32).unsqueeze(1) # (B, 1, T)
c_batch = paddle.to_tensor(
c_batch, dtype=paddle.float32).transpose([0, 2, 1]) # (B, C, T')
return y_batch, c_batch
def _adjust_length(self, x, c):
"""Adjust the audio and feature lengths.
Note:
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
"""
if len(x) < c.shape[0] * self.hop_size:
x = np.pad(x, (0, c.shape[0] * self.hop_size - len(x)), mode="edge")
elif len(x) > c.shape[0] * self.hop_size:
# print(
# f"wave length: ({len(x)}), mel length: ({c.shape[0]}), hop size: ({self.hop_size })"
# )
x = x[:c.shape[0] * self.hop_size]
# check the legnth is valid
assert len(x) == c.shape[
0] * self.hop_size, f"wave length: ({len(x)}), mel length: ({c.shape[0]})"
return x, c
class WaveRNNClip(Clip):
def __init__(self,
mode: str='RAW',
batch_max_steps: int=4500,
hop_size: int=300,
aux_context_window: int=2,
bits: int=9,
mu_law: bool=True):
self.mode = mode
self.mel_win = batch_max_steps // hop_size + 2 * aux_context_window
self.batch_max_steps = batch_max_steps
self.hop_size = hop_size
self.aux_context_window = aux_context_window
self.mu_law = mu_law
self.batch_max_frames = batch_max_steps // hop_size
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
if self.mode == 'MOL':
self.bits = 16
else:
self.bits = bits
def to_quant(self, wav):
if self.mode == 'RAW':
if self.mu_law:
quant = encode_mu_law(wav, mu=2**self.bits)
else:
quant = float_2_label(wav, bits=self.bits)
elif self.mode == 'MOL':
quant = float_2_label(wav, bits=16)
quant = quant.astype(np.int64)
return quant
def __call__(self, batch):
# voc_pad = 2 this will pad the input so that the resnet can 'see' wider than input length
# max_offsets = n_frames - 2 - (mel_win + 2 * hp.voc_pad) = n_frames - 15
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns:
Tensor: Input signal batch (B, 1, T).
Tensor: Target signal batch (B, 1, T).
Tensor: Auxiliary feature batch (B, C, T'),
where T = (T' - 2 * aux_context_window) * hop_size.
"""
# check length
batch = [
self._adjust_length(b['wave'], b['feats']) for b in batch
if b['feats'].shape[0] > self.mel_threshold
]
wav, mel = [b[0] for b in batch], [b[1] for b in batch]
# mel 此处需要转置
mel = [x.T for x in mel]
max_offsets = [
x.shape[-1] - 2 - (self.mel_win + 2 * self.aux_context_window)
for x in mel
]
# the slice point of mel selecting randomly
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
# the slice point of wav selecting randomly, which is behind 2(=pad) frames
sig_offsets = [(offset + self.aux_context_window) * self.hop_size
for offset in mel_offsets]
# mels.shape[1] = voc_seq_len // hop_length + 2 * voc_pad
mels = [
x[:, mel_offsets[i]:mel_offsets[i] + self.mel_win]
for i, x in enumerate(mel)
]
# label.shape[1] = voc_seq_len + 1
wav = [self.to_quant(x) for x in wav]
labels = [
x[sig_offsets[i]:sig_offsets[i] + self.batch_max_steps + 1]
for i, x in enumerate(wav)
]
mels = np.stack(mels).astype(np.float32)
labels = np.stack(labels).astype(np.int64)
mels = paddle.to_tensor(mels)
labels = paddle.to_tensor(labels, dtype='int64')
# x is input, y is label
x = labels[:, :self.batch_max_steps]
y = labels[:, 1:]
'''
mode = RAW:
mu_law = True:
quant: bits = 9 0, 1, 2, ..., 509, 510, 511 int
mu_law = False
quant bits = 9 [0 511] float
mode = MOL:
quant: bits = 16 [0. 65536] float
'''
# x should be normalizes in.[0, 1] in RAW mode
x = label_2_float(paddle.cast(x, dtype='float32'), self.bits)
# y should be normalizes in.[0, 1] in MOL mode
if self.mode == 'MOL':
y = label_2_float(paddle.cast(y, dtype='float32'), self.bits)
return x, y, mels