You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
4.8 KiB
138 lines
4.8 KiB
# This is the parameter configuration file for PaddleSpeech Offline Serving.
|
|
|
|
#################################################################################
|
|
# SERVER SETTING #
|
|
#################################################################################
|
|
host: 0.0.0.0
|
|
port: 8090
|
|
|
|
# The task format in the engin_list is: <speech task>_<engine type>
|
|
# task choices = ['asr_python', 'asr_inference', 'tts_python', 'tts_inference', 'cls_python', 'cls_inference']
|
|
protocol: 'http'
|
|
engine_list: ['asr_python', 'tts_python', 'cls_python']
|
|
|
|
|
|
#################################################################################
|
|
# ENGINE CONFIG #
|
|
#################################################################################
|
|
|
|
################################### ASR #########################################
|
|
################### speech task: asr; engine_type: python #######################
|
|
asr_python:
|
|
model: 'conformer_wenetspeech'
|
|
lang: 'zh'
|
|
sample_rate: 16000
|
|
cfg_path: # [optional]
|
|
ckpt_path: # [optional]
|
|
decode_method: 'attention_rescoring'
|
|
force_yes: True
|
|
device: # set 'gpu:id' or 'cpu'
|
|
|
|
|
|
################### speech task: asr; engine_type: inference #######################
|
|
asr_inference:
|
|
# model_type choices=['deepspeech2offline_aishell']
|
|
model_type: 'deepspeech2offline_aishell'
|
|
am_model: # the pdmodel file of am static model [optional]
|
|
am_params: # the pdiparams file of am static model [optional]
|
|
lang: 'zh'
|
|
sample_rate: 16000
|
|
cfg_path:
|
|
decode_method:
|
|
force_yes: True
|
|
|
|
am_predictor_conf:
|
|
device: # set 'gpu:id' or 'cpu'
|
|
switch_ir_optim: True
|
|
glog_info: False # True -> print glog
|
|
summary: True # False -> do not show predictor config
|
|
|
|
|
|
################################### TTS #########################################
|
|
################### speech task: tts; engine_type: python #######################
|
|
tts_python:
|
|
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc',
|
|
# 'fastspeech2_ljspeech', 'fastspeech2_aishell3',
|
|
# 'fastspeech2_vctk']
|
|
am: 'fastspeech2_csmsc'
|
|
am_config:
|
|
am_ckpt:
|
|
am_stat:
|
|
phones_dict:
|
|
tones_dict:
|
|
speaker_dict:
|
|
spk_id: 0
|
|
|
|
# voc (vocoder) choices=['pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3',
|
|
# 'pwgan_vctk', 'mb_melgan_csmsc']
|
|
voc: 'pwgan_csmsc'
|
|
voc_config:
|
|
voc_ckpt:
|
|
voc_stat:
|
|
|
|
# others
|
|
lang: 'zh'
|
|
device: # set 'gpu:id' or 'cpu'
|
|
|
|
|
|
################### speech task: tts; engine_type: inference #######################
|
|
tts_inference:
|
|
# am (acoustic model) choices=['speedyspeech_csmsc', 'fastspeech2_csmsc']
|
|
am: 'fastspeech2_csmsc'
|
|
am_model: # the pdmodel file of your am static model (XX.pdmodel)
|
|
am_params: # the pdiparams file of your am static model (XX.pdipparams)
|
|
am_sample_rate: 24000
|
|
phones_dict:
|
|
tones_dict:
|
|
speaker_dict:
|
|
spk_id: 0
|
|
|
|
am_predictor_conf:
|
|
device: # set 'gpu:id' or 'cpu'
|
|
switch_ir_optim: True
|
|
glog_info: False # True -> print glog
|
|
summary: True # False -> do not show predictor config
|
|
|
|
# voc (vocoder) choices=['pwgan_csmsc', 'mb_melgan_csmsc','hifigan_csmsc']
|
|
voc: 'pwgan_csmsc'
|
|
voc_model: # the pdmodel file of your vocoder static model (XX.pdmodel)
|
|
voc_params: # the pdiparams file of your vocoder static model (XX.pdipparams)
|
|
voc_sample_rate: 24000
|
|
|
|
voc_predictor_conf:
|
|
device: # set 'gpu:id' or 'cpu'
|
|
switch_ir_optim: True
|
|
glog_info: False # True -> print glog
|
|
summary: True # False -> do not show predictor config
|
|
|
|
# others
|
|
lang: 'zh'
|
|
|
|
|
|
################################### CLS #########################################
|
|
################### speech task: cls; engine_type: python #######################
|
|
cls_python:
|
|
# model choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
|
|
model: 'panns_cnn14'
|
|
cfg_path: # [optional] Config of cls task.
|
|
ckpt_path: # [optional] Checkpoint file of model.
|
|
label_file: # [optional] Label file of cls task.
|
|
device: # set 'gpu:id' or 'cpu'
|
|
|
|
|
|
################### speech task: cls; engine_type: inference #######################
|
|
cls_inference:
|
|
# model_type choices=['panns_cnn14', 'panns_cnn10', 'panns_cnn6']
|
|
model_type: 'panns_cnn14'
|
|
cfg_path:
|
|
model_path: # the pdmodel file of am static model [optional]
|
|
params_path: # the pdiparams file of am static model [optional]
|
|
label_file: # [optional] Label file of cls task.
|
|
|
|
predictor_conf:
|
|
device: # set 'gpu:id' or 'cpu'
|
|
switch_ir_optim: True
|
|
glog_info: False # True -> print glog
|
|
summary: True # False -> do not show predictor config
|
|
|