You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/io/dataset.py

233 lines
8.9 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2021 Mobvoi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
# Modified from wenet(https://github.com/wenet-e2e/wenet)
import jsonlines
from paddle.io import Dataset
from paddlespeech.s2t.frontend.utility import read_manifest
from paddlespeech.s2t.utils.log import Log
__all__ = ["ManifestDataset", "TransformDataset"]
logger = Log(__name__).getlog()
class ManifestDataset(Dataset):
@classmethod
def from_config(cls, config):
"""Build a ManifestDataset object from a config.
Args:
config (yacs.config.CfgNode): configs object.
Returns:
ManifestDataset: dataet object.
"""
assert 'manifest' in config
assert config.manifest
dataset = cls(
manifest_path=config.manifest,
max_input_len=config.max_input_len,
min_input_len=config.min_input_len,
max_output_len=config.max_output_len,
min_output_len=config.min_output_len,
max_output_input_ratio=config.max_output_input_ratio,
min_output_input_ratio=config.min_output_input_ratio, )
return dataset
def __init__(self,
manifest_path,
max_input_len=float('inf'),
min_input_len=0.0,
max_output_len=float('inf'),
min_output_len=0.0,
max_output_input_ratio=float('inf'),
min_output_input_ratio=0.0):
"""Manifest Dataset
Args:
manifest_path (str): manifest josn file path
max_input_len ([type], optional): maximum output seq length,
in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
min_input_len (float, optional): minimum input seq length,
in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
max_output_len (float, optional): maximum input seq length,
in modeling units. Defaults to 500.0.
min_output_len (float, optional): minimum input seq length,
in modeling units. Defaults to 0.0.
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio.
Defaults to 10.0.
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio.
Defaults to 0.05.
"""
super().__init__()
# read manifest
self._manifest = read_manifest(
manifest_path=manifest_path,
max_input_len=max_input_len,
min_input_len=min_input_len,
max_output_len=max_output_len,
min_output_len=min_output_len,
max_output_input_ratio=max_output_input_ratio,
min_output_input_ratio=min_output_input_ratio)
self._manifest.sort(key=lambda x: x["input"][0]["shape"][0])
def __len__(self):
return len(self._manifest)
def __getitem__(self, idx):
return self._manifest[idx]
class TransformDataset(Dataset):
"""Transform Dataset.
Args:
data: list object from make_batchset
converter: batch function
reader: read data
"""
def __init__(self, data, converter, reader):
"""Init function."""
super().__init__()
self.data = data
self.converter = converter
self.reader = reader
def __len__(self):
"""Len function."""
return len(self.data)
def __getitem__(self, idx):
"""[] operator."""
return self.converter([self.reader(self.data[idx], return_uttid=True)])
class AudioDataset(Dataset):
def __init__(self,
data_file,
max_length=10240,
min_length=0,
token_max_length=200,
token_min_length=1,
batch_type='static',
batch_size=1,
max_frames_in_batch=0,
sort=True,
raw_wav=True,
stride_ms=10):
"""Dataset for loading audio data.
Attributes::
data_file: input data file
Plain text data file, each line contains following 7 fields,
which is split by '\t':
utt:utt1
feat:tmp/data/file1.wav or feat:tmp/data/fbank.ark:30
feat_shape: 4.95(in seconds) or feat_shape:495,80(495 is in frames)
text:i love you
token: i <space> l o v e <space> y o u
tokenid: int id of this token
token_shape: M,N # M is the number of token, N is vocab size
max_length: drop utterance which is greater than max_length(10ms), unit 10ms.
min_length: drop utterance which is less than min_length(10ms), unit 10ms.
token_max_length: drop utterance which is greater than token_max_length,
especially when use char unit for english modeling
token_min_length: drop utterance which is less than token_max_length
batch_type: static or dynamic, see max_frames_in_batch(dynamic)
batch_size: number of utterances in a batch,
it's for static batch size.
max_frames_in_batch: max feature frames in a batch,
when batch_type is dynamic, it's for dynamic batch size.
Then batch_size is ignored, we will keep filling the
batch until the total frames in batch up to max_frames_in_batch.
sort: whether to sort all data, so the utterance with the same
length could be filled in a same batch.
raw_wav: use raw wave or extracted featute.
if raw wave is used, dynamic waveform-level augmentation could be used
and the feature is extracted by torchaudio.
if extracted featute(e.g. by kaldi) is used, only feature-level
augmentation such as specaug could be used.
"""
assert batch_type in ['static', 'dynamic']
# read manifest
with jsonlines.open(data_file, 'r') as reader:
data = list(reader)
if sort:
data = sorted(data, key=lambda x: x["feat_shape"][0])
if raw_wav:
path_suffix = data[0]['feat'].split(':')[0].splitext()[-1]
assert path_suffix not in ('.ark', '.scp')
# m second to n frame
data = list(
map(lambda x: (float(x['feat_shape'][0]) * 1000 / stride_ms),
data))
self.input_dim = data[0]['feat_shape'][1]
self.output_dim = data[0]['token_shape'][1]
valid_data = []
for i in range(len(data)):
length = data[i]['feat_shape'][0]
token_length = data[i]['token_shape'][0]
# remove too lang or too short utt for both input and output
# to prevent from out of memory
if length > max_length or length < min_length:
pass
elif token_length > token_max_length or token_length < token_min_length:
pass
else:
valid_data.append(data[i])
logger.info(f"raw dataset len: {len(data)}")
data = valid_data
num_data = len(data)
logger.info(f"dataset len after filter: {num_data}")
self.minibatch = []
# Dynamic batch size
if batch_type == 'dynamic':
assert (max_frames_in_batch > 0)
self.minibatch.append([])
num_frames_in_batch = 0
for i in range(num_data):
length = data[i]['feat_shape'][0]
num_frames_in_batch += length
if num_frames_in_batch > max_frames_in_batch:
self.minibatch.append([])
num_frames_in_batch = length
self.minibatch[-1].append(data[i])
# Static batch size
else:
cur = 0
while cur < num_data:
end = min(cur + batch_size, num_data)
item = []
for i in range(cur, end):
item.append(data[i])
self.minibatch.append(item)
cur = end
def __len__(self):
"""number of example(batch)"""
return len(self.minibatch)
def __getitem__(self, idx):
"""batch example of idx"""
return self.minibatch[idx]