# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path import paddle import soundfile as sf import yaml from timer import timer from yacs.config import CfgNode from paddlespeech.t2s.exps.syn_utils import am_to_static from paddlespeech.t2s.exps.syn_utils import get_am_inference from paddlespeech.t2s.exps.syn_utils import get_frontend from paddlespeech.t2s.exps.syn_utils import get_sentences from paddlespeech.t2s.exps.syn_utils import get_voc_inference from paddlespeech.t2s.exps.syn_utils import voc_to_static def evaluate(args): # Init body. with open(args.am_config) as f: am_config = CfgNode(yaml.safe_load(f)) with open(args.voc_config) as f: voc_config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(am_config) print(voc_config) sentences = get_sentences(text_file=args.text, lang=args.lang) # frontend frontend = get_frontend( lang=args.lang, phones_dict=args.phones_dict, tones_dict=args.tones_dict) # acoustic model am_name = args.am[:args.am.rindex('_')] am_dataset = args.am[args.am.rindex('_') + 1:] am_inference = get_am_inference( am=args.am, am_config=am_config, am_ckpt=args.am_ckpt, am_stat=args.am_stat, phones_dict=args.phones_dict, tones_dict=args.tones_dict, speaker_dict=args.speaker_dict) # vocoder voc_inference = get_voc_inference( voc=args.voc, voc_config=voc_config, voc_ckpt=args.voc_ckpt, voc_stat=args.voc_stat) # whether dygraph to static if args.inference_dir: # acoustic model am_inference = am_to_static( am_inference=am_inference, am=args.am, inference_dir=args.inference_dir, speaker_dict=args.speaker_dict) # vocoder voc_inference = voc_to_static( voc_inference=voc_inference, voc=args.voc, inference_dir=args.inference_dir) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) merge_sentences = False # Avoid not stopping at the end of a sub sentence when tacotron2_ljspeech dygraph to static graph # but still not stopping in the end (NOTE by yuantian01 Feb 9 2022) if am_name == 'tacotron2': merge_sentences = True get_tone_ids = False if am_name == 'speedyspeech': get_tone_ids = True N = 0 T = 0 for utt_id, sentence in sentences: with timer() as t: if args.lang == 'zh': input_ids = frontend.get_input_ids( sentence, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids) phone_ids = input_ids["phone_ids"] if get_tone_ids: tone_ids = input_ids["tone_ids"] elif args.lang == 'en': input_ids = frontend.get_input_ids( sentence, merge_sentences=merge_sentences) phone_ids = input_ids["phone_ids"] else: print("lang should in {'zh', 'en'}!") with paddle.no_grad(): flags = 0 for i in range(len(phone_ids)): part_phone_ids = phone_ids[i] # acoustic model if am_name == 'fastspeech2': # multi speaker if am_dataset in {"aishell3", "vctk"}: spk_id = paddle.to_tensor(args.spk_id) mel = am_inference(part_phone_ids, spk_id) else: mel = am_inference(part_phone_ids) elif am_name == 'speedyspeech': part_tone_ids = tone_ids[i] if am_dataset in {"aishell3", "vctk"}: spk_id = paddle.to_tensor(args.spk_id) mel = am_inference(part_phone_ids, part_tone_ids, spk_id) else: mel = am_inference(part_phone_ids, part_tone_ids) elif am_name == 'tacotron2': mel = am_inference(part_phone_ids) # vocoder wav = voc_inference(mel) if flags == 0: wav_all = wav flags = 1 else: wav_all = paddle.concat([wav_all, wav]) wav = wav_all.numpy() N += wav.size T += t.elapse speed = wav.size / t.elapse rtf = am_config.fs / speed print( f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}." ) sf.write( str(output_dir / (utt_id + ".wav")), wav, samplerate=am_config.fs) print(f"{utt_id} done!") print(f"generation speed: {N / T}Hz, RTF: {am_config.fs / (N / T) }") def parse_args(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser( description="Synthesize with acoustic model & vocoder") # acoustic model parser.add_argument( '--am', type=str, default='fastspeech2_csmsc', choices=[ 'speedyspeech_csmsc', 'speedyspeech_aishell3', 'fastspeech2_csmsc', 'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_vctk', 'tacotron2_csmsc', 'tacotron2_ljspeech' ], help='Choose acoustic model type of tts task.') parser.add_argument( '--am_config', type=str, default=None, help='Config of acoustic model. Use deault config when it is None.') parser.add_argument( '--am_ckpt', type=str, default=None, help='Checkpoint file of acoustic model.') parser.add_argument( "--am_stat", type=str, default=None, help="mean and standard deviation used to normalize spectrogram when training acoustic model." ) parser.add_argument( "--phones_dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--tones_dict", type=str, default=None, help="tone vocabulary file.") parser.add_argument( "--speaker_dict", type=str, default=None, help="speaker id map file.") parser.add_argument( '--spk_id', type=int, default=0, help='spk id for multi speaker acoustic model') # vocoder parser.add_argument( '--voc', type=str, default='pwgan_csmsc', choices=[ 'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk', 'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc', 'hifigan_ljspeech', 'hifigan_aishell3', 'hifigan_vctk', 'wavernn_csmsc', ], help='Choose vocoder type of tts task.') parser.add_argument( '--voc_config', type=str, default=None, help='Config of voc. Use deault config when it is None.') parser.add_argument( '--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.') parser.add_argument( "--voc_stat", type=str, default=None, help="mean and standard deviation used to normalize spectrogram when training voc." ) # other parser.add_argument( '--lang', type=str, default='zh', help='Choose model language. zh or en') parser.add_argument( "--inference_dir", type=str, default=None, help="dir to save inference models") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") parser.add_argument( "--text", type=str, help="text to synthesize, a 'utt_id sentence' pair per line.") parser.add_argument("--output_dir", type=str, help="output dir.") args = parser.parse_args() return args def main(): args = parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") evaluate(args) if __name__ == "__main__": main()