# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing as mp from functools import partial from pathlib import Path from typing import List import numpy as np from tqdm import tqdm from paddlespeech.t2s.exps.ge2e.audio_processor import SpeakerVerificationPreprocessor def _process_utterance(path_pair, processor: SpeakerVerificationPreprocessor): # Load and preprocess the waveform input_path, output_path = path_pair wav = processor.preprocess_wav(input_path) if len(wav) == 0: return # Create the mel spectrogram, discard those that are too short frames = processor.melspectrogram(wav) if len(frames) < processor.partial_n_frames: return np.save(output_path, frames) def _process_speaker(speaker_dir: Path, processor: SpeakerVerificationPreprocessor, datasets_root: Path, output_dir: Path, pattern: str, skip_existing: bool=False): # datastes root: a reference path to compute speaker_name # we prepand dataset name to speaker_id becase we are mixing serveal # multispeaker datasets together speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) speaker_output_dir = output_dir / speaker_name speaker_output_dir.mkdir(parents=True, exist_ok=True) # load exsiting file set sources_fpath = speaker_output_dir / "_sources.txt" if sources_fpath.exists(): try: with sources_fpath.open("rt") as sources_file: existing_names = {line.split(",")[0] for line in sources_file} except Exception as e: existing_names = {} else: existing_names = {} sources_file = sources_fpath.open("at" if skip_existing else "wt") for in_fpath in speaker_dir.rglob(pattern): out_name = "_".join( in_fpath.relative_to(speaker_dir).with_suffix(".npy").parts) if skip_existing and out_name in existing_names: continue out_fpath = speaker_output_dir / out_name _process_utterance((in_fpath, out_fpath), processor) sources_file.write(f"{out_name},{in_fpath}\n") sources_file.close() def _process_dataset(processor: SpeakerVerificationPreprocessor, datasets_root: Path, speaker_dirs: List[Path], dataset_name: str, output_dir: Path, pattern: str, skip_existing: bool=False): print( f"{dataset_name}: Preprocessing data for {len(speaker_dirs)} speakers.") _func = partial( _process_speaker, processor=processor, datasets_root=datasets_root, output_dir=output_dir, pattern=pattern, skip_existing=skip_existing) with mp.Pool(16) as pool: list( tqdm( pool.imap(_func, speaker_dirs), dataset_name, len(speaker_dirs), unit="speakers")) print(f"Done preprocessing {dataset_name}.") def process_librispeech(processor, datasets_root, output_dir, skip_existing=False): dataset_name = "LibriSpeech/train-other-500" dataset_root = datasets_root / dataset_name speaker_dirs = list(dataset_root.glob("*")) _process_dataset(processor, datasets_root, speaker_dirs, dataset_name, output_dir, "*.flac", skip_existing) def process_voxceleb1(processor, datasets_root, output_dir, skip_existing=False): dataset_name = "VoxCeleb1" dataset_root = datasets_root / dataset_name anglophone_nationalites = ["australia", "canada", "ireland", "uk", "usa"] with dataset_root.joinpath("vox1_meta.csv").open("rt") as metafile: metadata = [line.strip().split("\t") for line in metafile][1:] # speaker id -> nationality nationalities = {line[0]: line[3] for line in metadata if line[-1] == "dev"} keep_speaker_ids = [ speaker_id for speaker_id, nationality in nationalities.items() if nationality.lower() in anglophone_nationalites ] print( "VoxCeleb1: using samples from {} (presumed anglophone) speakers out of {}." .format(len(keep_speaker_ids), len(nationalities))) speaker_dirs = list((dataset_root / "wav").glob("*")) speaker_dirs = [ speaker_dir for speaker_dir in speaker_dirs if speaker_dir.name in keep_speaker_ids ] _process_dataset(processor, datasets_root, speaker_dirs, dataset_name, output_dir, "*.wav", skip_existing) def process_voxceleb2(processor, datasets_root, output_dir, skip_existing=False): dataset_name = "VoxCeleb2" dataset_root = datasets_root / dataset_name # There is no nationality in meta data for VoxCeleb2 speaker_dirs = list((dataset_root / "wav").glob("*")) _process_dataset(processor, datasets_root, speaker_dirs, dataset_name, output_dir, "*.wav", skip_existing) def process_aidatatang_200zh(processor, datasets_root, output_dir, skip_existing=False): dataset_name = "aidatatang_200zh/train" dataset_root = datasets_root / dataset_name speaker_dirs = list((dataset_root).glob("*")) _process_dataset(processor, datasets_root, speaker_dirs, dataset_name, output_dir, "*.wav", skip_existing) def process_magicdata(processor, datasets_root, output_dir, skip_existing=False): dataset_name = "magicdata/train" dataset_root = datasets_root / dataset_name speaker_dirs = list((dataset_root).glob("*")) _process_dataset(processor, datasets_root, speaker_dirs, dataset_name, output_dir, "*.wav", skip_existing)