# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from typing import List from typing import Optional from typing import Union import numpy as np import paddle import yaml from ..executor import BaseExecutor from ..utils import cli_register from ..utils import download_and_decompress from ..utils import logger from ..utils import MODEL_HOME from paddleaudio import load from paddleaudio.features import LogMelSpectrogram from paddlespeech.s2t.utils.dynamic_import import dynamic_import __all__ = ['CLSExecutor'] pretrained_models = { "panns_cnn6": { 'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn6.tar.gz', 'md5': '051b30c56bcb9a3dd67bc205cc12ffd2', 'cfg_path': 'panns.yaml', 'ckpt_path': 'cnn6.pdparams', 'label_file': 'audioset_labels.txt', }, "panns_cnn10": { 'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn10.tar.gz', 'md5': '97c6f25587685379b1ebcd4c1f624927', 'cfg_path': 'panns.yaml', 'ckpt_path': 'cnn10.pdparams', 'label_file': 'audioset_labels.txt', }, "panns_cnn14": { 'url': 'https://paddlespeech.bj.bcebos.com/cls/panns_cnn14.tar.gz', 'md5': 'e3b9b5614a1595001161d0ab95edee97', 'cfg_path': 'panns.yaml', 'ckpt_path': 'cnn14.pdparams', 'label_file': 'audioset_labels.txt', }, } model_alias = { "panns_cnn6": "paddlespeech.cls.models.panns:CNN6", "panns_cnn10": "paddlespeech.cls.models.panns:CNN10", "panns_cnn14": "paddlespeech.cls.models.panns:CNN14", } @cli_register( name='paddlespeech.cls', description='Audio classification infer command.') class CLSExecutor(BaseExecutor): def __init__(self): super(CLSExecutor, self).__init__() self.parser = argparse.ArgumentParser( prog='paddlespeech.cls', add_help=True) self.parser.add_argument( '--input', type=str, required=True, help='Audio file to classify.') self.parser.add_argument( '--model', type=str, default='panns_cnn14', help='Choose model type of cls task.') self.parser.add_argument( '--config', type=str, default=None, help='Config of cls task. Use deault config when it is None.') self.parser.add_argument( '--ckpt_path', type=str, default=None, help='Checkpoint file of model.') self.parser.add_argument( '--label_file', type=str, default=None, help='Label file of cls task.') self.parser.add_argument( '--topk', type=int, default=1, help='Return topk scores of classification result.') self.parser.add_argument( '--device', type=str, default=paddle.get_device(), help='Choose device to execute model inference.') def _get_pretrained_path(self, tag: str) -> os.PathLike: """ Download and returns pretrained resources path of current task. """ assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format( tag) res_path = os.path.join(MODEL_HOME, tag) decompressed_path = download_and_decompress(pretrained_models[tag], res_path) decompressed_path = os.path.abspath(decompressed_path) logger.info( 'Use pretrained model stored in: {}'.format(decompressed_path)) return decompressed_path def _init_from_path(self, model_type: str='panns_cnn14', cfg_path: Optional[os.PathLike]=None, label_file: Optional[os.PathLike]=None, ckpt_path: Optional[os.PathLike]=None): """ Init model and other resources from a specific path. """ if hasattr(self, 'model'): logger.info('Model had been initialized.') return if label_file is None or ckpt_path is None: self.res_path = self._get_pretrained_path(model_type) # panns_cnn14 self.cfg_path = os.path.join( self.res_path, pretrained_models[model_type]['cfg_path']) self.label_file = os.path.join( self.res_path, pretrained_models[model_type]['label_file']) self.ckpt_path = os.path.join( self.res_path, pretrained_models[model_type]['ckpt_path']) else: self.cfg_path = os.path.abspath(cfg_path) self.label_file = os.path.abspath(label_file) self.ckpt_path = os.path.abspath(ckpt_path) # config with open(self.cfg_path, 'r') as f: self._conf = yaml.safe_load(f) # labels self._label_list = [] with open(self.label_file, 'r') as f: for line in f: self._label_list.append(line.strip()) # model model_class = dynamic_import(model_type, model_alias) model_dict = paddle.load(self.ckpt_path) self.model = model_class(extract_embedding=False) self.model.set_state_dict(model_dict) self.model.eval() def preprocess(self, audio_file: Union[str, os.PathLike]): """ Input preprocess and return paddle.Tensor stored in self.input. Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet). """ feat_conf = self._conf['feature'] logger.info(feat_conf) waveform, _ = load( file=audio_file, sr=feat_conf['sample_rate'], mono=True, dtype='float32') logger.info("Preprocessing audio_file:" + audio_file) # Feature extraction feature_extractor = LogMelSpectrogram( sr=feat_conf['sample_rate'], n_fft=feat_conf['n_fft'], hop_length=feat_conf['hop_length'], window=feat_conf['window'], win_length=feat_conf['window_length'], f_min=feat_conf['f_min'], f_max=feat_conf['f_max'], n_mels=feat_conf['n_mels'], ) feats = feature_extractor( paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0))) self._inputs['feats'] = paddle.transpose(feats, [0, 2, 1]).unsqueeze( 1) # [B, N, T] -> [B, 1, T, N] @paddle.no_grad() def infer(self): """ Model inference and result stored in self.output. """ self._outputs['logits'] = self.model(self._inputs['feats']) def _generate_topk_label(self, result: np.ndarray, topk: int) -> str: assert topk <= len( self._label_list), 'Value of topk is larger than number of labels.' topk_idx = (-result).argsort()[:topk] ret = '' for idx in topk_idx: label, score = self._label_list[idx], result[idx] ret += f'{label}: {score}\n' return ret def postprocess(self, topk: int) -> Union[str, os.PathLike]: """ Output postprocess and return human-readable results such as texts and audio files. """ return self._generate_topk_label( result=self._outputs['logits'].squeeze(0).numpy(), topk=topk) def execute(self, argv: List[str]) -> bool: """ Command line entry. """ parser_args = self.parser.parse_args(argv) model_type = parser_args.model label_file = parser_args.label_file cfg_path = parser_args.config ckpt_path = parser_args.ckpt_path audio_file = parser_args.input topk = parser_args.topk device = parser_args.device try: res = self(model_type, cfg_path, label_file, ckpt_path, audio_file, topk, device) logger.info('CLS Result:\n{}'.format(res)) return True except Exception as e: logger.exception(e) return False def __call__(self, model_type, cfg_path, label_file, ckpt_path, audio_file, topk, device): """ Python API to call an executor. """ audio_file = os.path.abspath(audio_file) # self._check(audio_file, sample_rate) paddle.set_device(device) self._init_from_path(model_type, cfg_path, label_file, ckpt_path) self.preprocess(audio_file) self.infer() res = self.postprocess(topk) # Retrieve result of cls. return res