# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def delta(feat, window): assert window > 0 delta_feat = np.zeros_like(feat) for i in range(1, window + 1): delta_feat[:-i] += i * feat[i:] delta_feat[i:] += -i * feat[:-i] delta_feat[-i:] += i * feat[-1] delta_feat[:i] += -i * feat[0] delta_feat /= 2 * sum(i**2 for i in range(1, window + 1)) return delta_feat def add_deltas(x, window=2, order=2): """ Args: x (np.ndarray): speech feat, (T, D). Return: np.ndarray: (T, (1+order)*D) """ feats = [x] for _ in range(order): feats.append(delta(feats[-1], window)) return np.concatenate(feats, axis=1) class AddDeltas(): def __init__(self, window=2, order=2): self.window = window self.order = order def __repr__(self): return "{name}(window={window}, order={order}".format( name=self.__class__.__name__, window=self.window, order=self.order) def __call__(self, x): return add_deltas(x, window=self.window, order=self.order)