# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ASR Interface module.""" import argparse from deepspeech.utils.dynamic_import import dynamic_import class ASRInterface: """ASR Interface model implementation.""" @staticmethod def add_arguments(parser): """Add arguments to parser.""" return parser @classmethod def build(cls, idim: int, odim: int, **kwargs): """Initialize this class with python-level args. Args: idim (int): The number of an input feature dim. odim (int): The number of output vocab. Returns: ASRinterface: A new instance of ASRInterface. """ args = argparse.Namespace(**kwargs) return cls(idim, odim, args) def forward(self, xs, ilens, ys, olens): """Compute loss for training. :param xs: batch of padded source sequences paddle.Tensor (B, Tmax, idim) :param ilens: batch of lengths of source sequences (B), paddle.Tensor :param ys: batch of padded target sequences paddle.Tensor (B, Lmax) :param olens: batch of lengths of target sequences (B), paddle.Tensor :return: loss value :rtype: paddle.Tensor """ raise NotImplementedError("forward method is not implemented") def recognize(self, x, recog_args, char_list=None, rnnlm=None): """Recognize x for evaluation. :param ndarray x: input acouctic feature (B, T, D) or (T, D) :param namespace recog_args: argment namespace contraining options :param list char_list: list of characters :param paddle.nn.Layer rnnlm: language model module :return: N-best decoding results :rtype: list """ raise NotImplementedError("recognize method is not implemented") def recognize_batch(self, x, recog_args, char_list=None, rnnlm=None): """Beam search implementation for batch. :param paddle.Tensor x: encoder hidden state sequences (B, Tmax, Henc) :param namespace recog_args: argument namespace containing options :param list char_list: list of characters :param paddle.nn.Module rnnlm: language model module :return: N-best decoding results :rtype: list """ raise NotImplementedError("Batch decoding is not supported yet.") def calculate_all_attentions(self, xs, ilens, ys): """Calculate attention. :param list xs: list of padded input sequences [(T1, idim), (T2, idim), ...] :param ndarray ilens: batch of lengths of input sequences (B) :param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...] :return: attention weights (B, Lmax, Tmax) :rtype: float ndarray """ raise NotImplementedError( "calculate_all_attentions method is not implemented") def calculate_all_ctc_probs(self, xs, ilens, ys): """Calculate CTC probability. :param list xs_pad: list of padded input sequences [(T1, idim), (T2, idim), ...] :param ndarray ilens: batch of lengths of input sequences (B) :param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...] :return: CTC probabilities (B, Tmax, vocab) :rtype: float ndarray """ raise NotImplementedError( "calculate_all_ctc_probs method is not implemented") @property def attention_plot_class(self): """Get attention plot class.""" from deepspeech.training.extensions.plot import PlotAttentionReport return PlotAttentionReport @property def ctc_plot_class(self): """Get CTC plot class.""" from deepspeech.training.extensions.plot import PlotCTCReport return PlotCTCReport def get_total_subsampling_factor(self): """Get total subsampling factor.""" raise NotImplementedError( "get_total_subsampling_factor method is not implemented") def encode(self, feat): """Encode feature in `beam_search` (optional). Args: x (numpy.ndarray): input feature (T, D) Returns: paddle.Tensor: encoded feature (T, D) """ raise NotImplementedError("encode method is not implemented") def scorers(self): """Get scorers for `beam_search` (optional). Returns: dict[str, ScorerInterface]: dict of `ScorerInterface` objects """ raise NotImplementedError("decoders method is not implemented") predefined_asr = { "transformer": "deepspeech.models.u2:U2Model", "conformer": "deepspeech.models.u2:U2Model", } def dynamic_import_asr(module): """Import ASR models dynamically. Args: module (str): asr name. e.g., transformer, conformer Returns: type: ASR class """ model_class = dynamic_import(module, predefined_asr) assert issubclass(model_class, ASRInterface), f"{module} does not implement ASRInterface" return model_class