# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the text featurizer class.""" from pprint import pformat import sentencepiece as spm from ..utility import BLANK from ..utility import EOS from ..utility import load_dict from ..utility import MASKCTC from ..utility import SOS from ..utility import SPACE from ..utility import UNK from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = ["TextFeaturizer"] class TextFeaturizer(): def __init__(self, unit_type, vocab_filepath, spm_model_prefix=None, maskctc=False): """Text featurizer, for processing or extracting features from text. Currently, it supports char/word/sentence-piece level tokenizing and conversion into a list of token indices. Note that the token indexing order follows the given vocabulary file. Args: unit_type (str): unit type, e.g. char, word, spm vocab_filepath (str): Filepath to load vocabulary for token indices conversion. spm_model_prefix (str, optional): spm model prefix. Defaults to None. """ assert unit_type in ('char', 'spm', 'word') self.unit_type = unit_type self.unk = UNK self.maskctc = maskctc if vocab_filepath: self.vocab_dict, self._id2token, self.vocab_list, self.unk_id, self.eos_id = self._load_vocabulary_from_file( vocab_filepath, maskctc) self.vocab_size = len(self.vocab_list) if unit_type == 'spm': spm_model = spm_model_prefix + '.model' self.sp = spm.SentencePieceProcessor() self.sp.Load(spm_model) def tokenize(self, text, replace_space=True): if self.unit_type == 'char': tokens = self.char_tokenize(text, replace_space) elif self.unit_type == 'word': tokens = self.word_tokenize(text) else: # spm tokens = self.spm_tokenize(text) return tokens def detokenize(self, tokens): if self.unit_type == 'char': text = self.char_detokenize(tokens) elif self.unit_type == 'word': text = self.word_detokenize(tokens) else: # spm text = self.spm_detokenize(tokens) return text def featurize(self, text): """Convert text string to a list of token indices. Args: text (str): Text to process. Returns: List[int]: List of token indices. """ tokens = self.tokenize(text) ids = [] for token in tokens: token = token if token in self.vocab_dict else self.unk ids.append(self.vocab_dict[token]) return ids def defeaturize(self, idxs): """Convert a list of token indices to text string, ignore index after eos_id. Args: idxs (List[int]): List of token indices. Returns: str: Text. """ tokens = [] for idx in idxs: if idx == self.eos_id: break tokens.append(self._id2token[idx]) text = self.detokenize(tokens) return text def char_tokenize(self, text, replace_space=True): """Character tokenizer. Args: text (str): text string. replace_space (bool): False only used by build_vocab.py. Returns: List[str]: tokens. """ text = text.strip() if replace_space: text_list = [SPACE if item == " " else item for item in list(text)] else: text_list = list(text) return text_list def char_detokenize(self, tokens): """Character detokenizer. Args: tokens (List[str]): tokens. Returns: str: text string. """ tokens = [t.replace(SPACE, " ") for t in tokens ] return "".join(tokens) def word_tokenize(self, text): """Word tokenizer, separate by .""" return text.strip().split() def word_detokenize(self, tokens): """Word detokenizer, separate by .""" return " ".join(tokens) def spm_tokenize(self, text): """spm tokenize. Args: text (str): text string. Returns: List[str]: sentence pieces str code """ stats = {"num_empty": 0, "num_filtered": 0} def valid(line): return True def encode(l): return self.sp.EncodeAsPieces(l) def encode_line(line): line = line.strip() if len(line) > 0: line = encode(line) if valid(line): return line else: stats["num_filtered"] += 1 else: stats["num_empty"] += 1 return None enc_line = encode_line(text) return enc_line def spm_detokenize(self, tokens, input_format='piece'): """spm detokenize. Args: ids (List[str]): tokens. Returns: str: text """ if input_format == "piece": def decode(l): return "".join(self.sp.DecodePieces(l)) elif input_format == "id": def decode(l): return "".join(self.sp.DecodeIds(l)) return decode(tokens) def _load_vocabulary_from_file(self, vocab_filepath: str, maskctc: bool): """Load vocabulary from file.""" vocab_list = load_dict(vocab_filepath, maskctc) assert vocab_list is not None logger.debug(f"Vocab: {pformat(vocab_list)}") id2token = dict( [(idx, token) for (idx, token) in enumerate(vocab_list)]) token2id = dict( [(token, idx) for (idx, token) in enumerate(vocab_list)]) blank_id = vocab_list.index(BLANK) if BLANK in vocab_list else -1 maskctc_id = vocab_list.index(MASKCTC) if MASKCTC in vocab_list else -1 unk_id = vocab_list.index(UNK) if UNK in vocab_list else -1 eos_id = vocab_list.index(EOS) if EOS in vocab_list else -1 sos_id = vocab_list.index(SOS) if SOS in vocab_list else -1 space_id = vocab_list.index(SPACE) if SPACE in vocab_list else -1 logger.info(f"BLANK id: {blank_id}") logger.info(f"UNK id: {unk_id}") logger.info(f"EOS id: {eos_id}") logger.info(f"SOS id: {sos_id}") logger.info(f"SPACE id: {space_id}") logger.info(f"MASKCTC id: {maskctc_id}") return token2id, id2token, vocab_list, unk_id, eos_id