"""Evaluation for DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import distutils.util import argparse import gzip import paddle.v2 as paddle from data_utils.data import DataGenerator from model import deep_speech2 from decoder import * from lm.lm_scorer import LmScorer from error_rate import wer parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--batch_size", default=100, type=int, help="Minibatch size for evaluation. (default: %(default)s)") parser.add_argument( "--num_conv_layers", default=2, type=int, help="Convolution layer number. (default: %(default)s)") parser.add_argument( "--num_rnn_layers", default=3, type=int, help="RNN layer number. (default: %(default)s)") parser.add_argument( "--rnn_layer_size", default=512, type=int, help="RNN layer cell number. (default: %(default)s)") parser.add_argument( "--use_gpu", default=True, type=distutils.util.strtobool, help="Use gpu or not. (default: %(default)s)") parser.add_argument( "--num_threads_data", default=multiprocessing.cpu_count(), type=int, help="Number of cpu threads for preprocessing data. (default: %(default)s)") parser.add_argument( "--num_processes_beam_search", default=multiprocessing.cpu_count(), type=int, help="Number of cpu processes for beam search. (default: %(default)s)") parser.add_argument( "--mean_std_filepath", default='mean_std.npz', type=str, help="Manifest path for normalizer. (default: %(default)s)") parser.add_argument( "--decode_method", default='beam_search', type=str, help="Method for ctc decoding, best_path or beam_search. (default: %(default)s)" ) parser.add_argument( "--language_model_path", default="lm/data/common_crawl_00.prune01111.trie.klm", type=str, help="Path for language model. (default: %(default)s)") parser.add_argument( "--alpha", default=0.26, type=float, help="Parameter associated with language model. (default: %(default)f)") parser.add_argument( "--beta", default=0.1, type=float, help="Parameter associated with word count. (default: %(default)f)") parser.add_argument( "--cutoff_prob", default=0.99, type=float, help="The cutoff probability of pruning" "in beam search. (default: %(default)f)") parser.add_argument( "--beam_size", default=500, type=int, help="Width for beam search decoding. (default: %(default)d)") parser.add_argument( "--decode_manifest_path", default='datasets/manifest.test', type=str, help="Manifest path for decoding. (default: %(default)s)") parser.add_argument( "--model_filepath", default='checkpoints/params.latest.tar.gz', type=str, help="Model filepath. (default: %(default)s)") parser.add_argument( "--vocab_filepath", default='datasets/vocab/eng_vocab.txt', type=str, help="Vocabulary filepath. (default: %(default)s)") args = parser.parse_args() def evaluate(): """Evaluate on whole test data for DeepSpeech2.""" # initialize data generator data_generator = DataGenerator( vocab_filepath=args.vocab_filepath, mean_std_filepath=args.mean_std_filepath, augmentation_config='{}', num_threads=args.num_threads_data) # create network config # paddle.data_type.dense_array is used for variable batch input. # The size 161 * 161 is only an placeholder value and the real shape # of input batch data will be induced during training. audio_data = paddle.layer.data( name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161)) text_data = paddle.layer.data( name="transcript_text", type=paddle.data_type.integer_value_sequence(data_generator.vocab_size)) output_probs = deep_speech2( audio_data=audio_data, text_data=text_data, dict_size=data_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_size=args.rnn_layer_size, is_inference=True) # load parameters parameters = paddle.parameters.Parameters.from_tar( gzip.open(args.model_filepath)) # prepare infer data batch_reader = data_generator.batch_reader_creator( manifest_path=args.decode_manifest_path, batch_size=args.batch_size, min_batch_size=1, sortagrad=False, shuffle_method=None) # define inferer inferer = paddle.inference.Inference( output_layer=output_probs, parameters=parameters) # initialize external scorer for beam search decoding if args.decode_method == 'beam_search': ext_scorer = LmScorer(args.alpha, args.beta, args.language_model_path) wer_counter, wer_sum = 0, 0.0 for infer_data in batch_reader(): # run inference infer_results = inferer.infer(input=infer_data) num_steps = len(infer_results) // len(infer_data) probs_split = [ infer_results[i * num_steps:(i + 1) * num_steps] for i in xrange(0, len(infer_data)) ] # target transcription target_transcription = [ ''.join([ data_generator.vocab_list[index] for index in infer_data[i][1] ]) for i, probs in enumerate(probs_split) ] # decode and print # best path decode if args.decode_method == "best_path": for i, probs in enumerate(probs_split): output_transcription = ctc_best_path_decoder( probs_seq=probs, vocabulary=data_generator.vocab_list) wer_sum += wer(target_transcription[i], output_transcription) wer_counter += 1 # beam search decode elif args.decode_method == "beam_search": # beam search using multiple processes beam_search_results = ctc_beam_search_decoder_batch( probs_split=probs_split, vocabulary=data_generator.vocab_list, beam_size=args.beam_size, blank_id=len(data_generator.vocab_list), num_processes=args.num_processes_beam_search, ext_scoring_func=ext_scorer, cutoff_prob=args.cutoff_prob, ) for i, beam_search_result in enumerate(beam_search_results): wer_sum += wer(target_transcription[i], beam_search_result[0][1]) wer_counter += 1 else: raise ValueError("Decoding method [%s] is not supported." % decode_method) print("Final WER = %f" % (wer_sum / wer_counter)) def main(): paddle.init(use_gpu=args.use_gpu, trainer_count=1) evaluate() if __name__ == '__main__': main()