# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layer modules for FFT block in FastSpeech (Feed-forward Transformer).""" from paddle import nn class MultiLayeredConv1d(nn.Layer): """Multi-layered conv1d for Transformer block. This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): """Initialize MultiLayeredConv1d module. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. """ super().__init__() self.w_1 = nn.Conv1D( in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.w_2 = nn.Conv1D( hidden_chans, in_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.dropout = nn.Dropout(dropout_rate) self.relu = nn.ReLU() def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, T, in_chans). Returns: Tensor: Batch of output tensors (B, T, in_chans). """ x = self.relu(self.w_1(x.transpose([0, 2, 1]))).transpose([0, 2, 1]) out = self.w_2(self.dropout(x).transpose([0, 2, 1])).transpose([0, 2, 1]) return out class Conv1dLinear(nn.Layer): """Conv1D + Linear for Transformer block. A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. """ def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): """Initialize Conv1dLinear module. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. """ super().__init__() self.w_1 = nn.Conv1D( in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.w_2 = nn.Linear(hidden_chans, in_chans, bias_attr=True) self.dropout = nn.Dropout(dropout_rate) self.relu = nn.ReLU() def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, T, in_chans). Returns: Tensor: Batch of output tensors (B, T, in_chans). """ x = self.relu(self.w_1(x.transpose([0, 2, 1]))).transpose([0, 2, 1]) return self.w_2(self.dropout(x))