# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Attention modules for RNN.""" import paddle import paddle.nn.functional as F from paddle import nn from paddlespeech.t2s.modules.masked_fill import masked_fill from paddlespeech.t2s.modules.nets_utils import make_pad_mask def _apply_attention_constraint(e, last_attended_idx, backward_window=1, forward_window=3): """Apply monotonic attention constraint. This function apply the monotonic attention constraint introduced in `Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`_. Args: e(Tensor): Attention energy before applying softmax (1, T). last_attended_idx(int): The index of the inputs of the last attended [0, T]. backward_window(int, optional, optional): Backward window size in attention constraint. (Default value = 1) forward_window(int, optional, optional): Forward window size in attetion constraint. (Default value = 3) Returns: Tensor: Monotonic constrained attention energy (1, T). .. _`Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`: https://arxiv.org/abs/1710.07654 """ # for dygraph to static graph # if e.shape[0] != 1: # raise NotImplementedError( # "Batch attention constraining is not yet supported.") backward_idx = paddle.cast( last_attended_idx - backward_window, dtype='int64') forward_idx = paddle.cast(last_attended_idx + forward_window, dtype='int64') if backward_idx > 0: e[:, :backward_idx] = -float("inf") if forward_idx < paddle.shape(e)[1]: e[:, forward_idx:] = -float("inf") return e class AttLoc(nn.Layer): """location-aware attention module. Reference: Attention-Based Models for Speech Recognition (https://arxiv.org/pdf/1506.07503.pdf) Args: eprojs (int): projection-units of encoder dunits (int): units of decoder att_dim (int): attention dimension aconv_chans (int): channels of attention convolution aconv_filts (int): filter size of attention convolution han_mode (bool): flag to swith on mode of hierarchical attention and not store pre_compute_enc_h """ def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False): super().__init__() self.mlp_enc = nn.Linear(eprojs, att_dim) self.mlp_dec = nn.Linear(dunits, att_dim, bias_attr=False) self.mlp_att = nn.Linear(aconv_chans, att_dim, bias_attr=False) self.loc_conv = nn.Conv2D( 1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias_attr=False, ) self.gvec = nn.Linear(att_dim, 1) self.dunits = dunits self.eprojs = eprojs self.att_dim = att_dim self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None self.han_mode = han_mode def reset(self): """reset states""" self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None def forward( self, enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0, last_attended_idx=-1, backward_window=1, forward_window=3, ): """Calculate AttLoc forward propagation. Args: enc_hs_pad(Tensor): padded encoder hidden state (B, T_max, D_enc) enc_hs_len(Tensor): padded encoder hidden state length (B) dec_z(Tensor dec_z): decoder hidden state (B, D_dec) att_prev(Tensor): previous attention weight (B, T_max) scaling(float, optional): scaling parameter before applying softmax (Default value = 2.0) forward_window(Tensor, optional): forward window size when constraining attention (Default value = 3) last_attended_idx(int, optional): index of the inputs of the last attended (Default value = None) backward_window(int, optional): backward window size in attention constraint (Default value = 1) forward_window(int, optional): forward window size in attetion constraint (Default value = 3) Returns: Tensor: attention weighted encoder state (B, D_enc) Tensor: previous attention weights (B, T_max) """ batch = paddle.shape(enc_hs_pad)[0] # pre-compute all h outside the decoder loop if self.pre_compute_enc_h is None or self.han_mode: # (utt, frame, hdim) self.enc_h = enc_hs_pad self.h_length = paddle.shape(self.enc_h)[1] # (utt, frame, att_dim) self.pre_compute_enc_h = self.mlp_enc(self.enc_h) if dec_z is None: dec_z = paddle.zeros([batch, self.dunits]) else: dec_z = dec_z.reshape([batch, self.dunits]) # initialize attention weight with uniform dist. if paddle.sum(att_prev) == 0: # if no bias, 0 0-pad goes 0 att_prev = 1.0 - make_pad_mask(enc_hs_len) att_prev = att_prev / enc_hs_len.unsqueeze(-1).astype( att_prev.dtype) # att_prev: (utt, frame) -> (utt, 1, 1, frame) # -> (utt, att_conv_chans, 1, frame) att_conv = self.loc_conv(att_prev.reshape([batch, 1, 1, self.h_length])) # att_conv: (utt, att_conv_chans, 1, frame) -> (utt, frame, att_conv_chans) att_conv = att_conv.squeeze(2).transpose([0, 2, 1]) # att_conv: (utt, frame, att_conv_chans) -> (utt, frame, att_dim) att_conv = self.mlp_att(att_conv) # dec_z_tiled: (utt, frame, att_dim) dec_z_tiled = self.mlp_dec(dec_z).reshape([batch, 1, self.att_dim]) # dot with gvec # (utt, frame, att_dim) -> (utt, frame) e = paddle.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled) e = self.gvec(e).squeeze(2) # NOTE: consider zero padding when compute w. if self.mask is None: self.mask = make_pad_mask(enc_hs_len) e = masked_fill(e, self.mask, -float("inf")) # apply monotonic attention constraint (mainly for TTS) if last_attended_idx != -1: e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) w = F.softmax(scaling * e, axis=1) # weighted sum over frames # utt x hdim c = paddle.sum( self.enc_h * w.reshape([batch, self.h_length, 1]), axis=1) return c, w class AttForward(nn.Layer): """Forward attention module. Reference ---------- Forward attention in sequence-to-sequence acoustic modeling for speech synthesis (https://arxiv.org/pdf/1807.06736.pdf) Args: eprojs (int): projection-units of encoder dunits (int): units of decoder att_dim (int): attention dimension aconv_chans (int): channels of attention convolution aconv_filts (int): filter size of attention convolution """ def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts): super().__init__() self.mlp_enc = nn.Linear(eprojs, att_dim) self.mlp_dec = nn.Linear(dunits, att_dim, bias_attr=False) self.mlp_att = nn.Linear(aconv_chans, att_dim, bias_attr=False) self.loc_conv = nn.Conv2D( 1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias_attr=False, ) self.gvec = nn.Linear(att_dim, 1) self.dunits = dunits self.eprojs = eprojs self.att_dim = att_dim self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None def reset(self): """reset states""" self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None def forward( self, enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=1.0, last_attended_idx=None, backward_window=1, forward_window=3, ): """Calculate AttForward forward propagation. Args: enc_hs_pad(Tensor): padded encoder hidden state (B, T_max, D_enc) enc_hs_len(list): padded encoder hidden state length (B,) dec_z(Tensor): decoder hidden state (B, D_dec) att_prev(Tensor): attention weights of previous step (B, T_max) scaling(float, optional): scaling parameter before applying softmax (Default value = 1.0) last_attended_idx(int, optional): index of the inputs of the last attended (Default value = None) backward_window(int, optional): backward window size in attention constraint (Default value = 1) forward_window(int, optional): (Default value = 3) Returns: Tensor: attention weighted encoder state (B, D_enc) Tensor: previous attention weights (B, T_max) """ batch = len(enc_hs_pad) # pre-compute all h outside the decoder loop if self.pre_compute_enc_h is None: self.enc_h = enc_hs_pad # utt x frame x hdim self.h_length = paddle.shape(self.enc_h)[1] # utt x frame x att_dim self.pre_compute_enc_h = self.mlp_enc(self.enc_h) if dec_z is None: dec_z = paddle.zeros([batch, self.dunits]) else: dec_z = dec_z.reshape([batch, self.dunits]) if att_prev is None: # initial attention will be [1, 0, 0, ...] att_prev = paddle.zeros([*paddle.shape(enc_hs_pad)[:2]]) att_prev[:, 0] = 1.0 # att_prev: utt x frame -> utt x 1 x 1 x frame # -> utt x att_conv_chans x 1 x frame att_conv = self.loc_conv(att_prev.reshape([batch, 1, 1, self.h_length])) # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans att_conv = att_conv.squeeze(2).transpose([0, 2, 1]) # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim att_conv = self.mlp_att(att_conv) # dec_z_tiled: utt x frame x att_dim dec_z_tiled = self.mlp_dec(dec_z).unsqueeze(1) # dot with gvec # utt x frame x att_dim -> utt x frame e = self.gvec( paddle.tanh(self.pre_compute_enc_h + dec_z_tiled + att_conv)).squeeze(2) # NOTE: consider zero padding when compute w. if self.mask is None: self.mask = make_pad_mask(enc_hs_len) e = masked_fill(e, self.mask, -float("inf")) # apply monotonic attention constraint (mainly for TTS) if last_attended_idx is not None: e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) w = F.softmax(scaling * e, axis=1) # forward attention att_prev_shift = F.pad(att_prev, (0, 0, 1, 0))[:, :-1] w = (att_prev + att_prev_shift) * w # NOTE: clip is needed to avoid nan gradient w = F.normalize(paddle.clip(w, 1e-6), p=1, axis=1) # weighted sum over flames # utt x hdim # NOTE use bmm instead of sum(*) c = paddle.sum(self.enc_h * w.unsqueeze(-1), axis=1) return c, w class AttForwardTA(nn.Layer): """Forward attention with transition agent module. Reference: Forward attention in sequence-to-sequence acoustic modeling for speech synthesis (https://arxiv.org/pdf/1807.06736.pdf) Args: eunits (int): units of encoder dunits (int): units of decoder att_dim (int): attention dimension aconv_chans (int): channels of attention convolution aconv_filts (int): filter size of attention convolution odim (int): output dimension """ def __init__(self, eunits, dunits, att_dim, aconv_chans, aconv_filts, odim): super().__init__() self.mlp_enc = nn.Linear(eunits, att_dim) self.mlp_dec = nn.Linear(dunits, att_dim, bias_attr=False) self.mlp_ta = nn.Linear(eunits + dunits + odim, 1) self.mlp_att = nn.Linear(aconv_chans, att_dim, bias_attr=False) self.loc_conv = nn.Conv2D( 1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias_attr=False, ) self.gvec = nn.Linear(att_dim, 1) self.dunits = dunits self.eunits = eunits self.att_dim = att_dim self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None self.trans_agent_prob = 0.5 def reset(self): self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None self.trans_agent_prob = 0.5 def forward( self, enc_hs_pad, enc_hs_len, dec_z, att_prev, out_prev, scaling=1.0, last_attended_idx=None, backward_window=1, forward_window=3, ): """Calculate AttForwardTA forward propagation. Args: enc_hs_pad(Tensor): padded encoder hidden state (B, Tmax, eunits) enc_hs_len(list Tensor): padded encoder hidden state length (B,) dec_z(Tensor): decoder hidden state (B, dunits) att_prev(Tensor): attention weights of previous step (B, T_max) out_prev(Tensor): decoder outputs of previous step (B, odim) scaling(float, optional): scaling parameter before applying softmax (Default value = 1.0) last_attended_idx(int, optional): index of the inputs of the last attended (Default value = None) backward_window(int, optional): backward window size in attention constraint (Default value = 1) forward_window(int, optional): (Default value = 3) Returns: Tensor: attention weighted encoder state (B, dunits) Tensor: previous attention weights (B, Tmax) """ batch = len(enc_hs_pad) # pre-compute all h outside the decoder loop if self.pre_compute_enc_h is None: self.enc_h = enc_hs_pad # utt x frame x hdim self.h_length = paddle.shape(self.enc_h)[1] # utt x frame x att_dim self.pre_compute_enc_h = self.mlp_enc(self.enc_h) if dec_z is None: dec_z = paddle.zeros([batch, self.dunits]) else: dec_z = dec_z.reshape([batch, self.dunits]) if att_prev is None: # initial attention will be [1, 0, 0, ...] att_prev = paddle.zeros([*paddle.shape(enc_hs_pad)[:2]]) att_prev[:, 0] = 1.0 # att_prev: utt x frame -> utt x 1 x 1 x frame # -> utt x att_conv_chans x 1 x frame att_conv = self.loc_conv(att_prev.reshape([batch, 1, 1, self.h_length])) # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans att_conv = att_conv.squeeze(2).transpose([0, 2, 1]) # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim att_conv = self.mlp_att(att_conv) # dec_z_tiled: utt x frame x att_dim dec_z_tiled = self.mlp_dec(dec_z).reshape([batch, 1, self.att_dim]) # dot with gvec # utt x frame x att_dim -> utt x frame e = self.gvec( paddle.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2) # NOTE consider zero padding when compute w. if self.mask is None: self.mask = make_pad_mask(enc_hs_len) e = masked_fill(e, self.mask, -float("inf")) # apply monotonic attention constraint (mainly for TTS) if last_attended_idx is not None: e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) w = F.softmax(scaling * e, axis=1) # forward attention # att_prev_shift = F.pad(att_prev.unsqueeze(0), (1, 0), data_format='NCL').squeeze(0)[:, :-1] att_prev_shift = F.pad(att_prev, (0, 0, 1, 0))[:, :-1] w = (self.trans_agent_prob * att_prev + (1 - self.trans_agent_prob) * att_prev_shift) * w # NOTE: clip is needed to avoid nan gradient w = F.normalize(paddle.clip(w, 1e-6), p=1, axis=1) # weighted sum over flames # utt x hdim # NOTE use bmm instead of sum(*) c = paddle.sum( self.enc_h * w.reshape([batch, self.h_length, 1]), axis=1) # update transition agent prob self.trans_agent_prob = F.sigmoid( self.mlp_ta(paddle.concat([c, out_prev, dec_z], axis=1))) return c, w