# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path import paddle import soundfile as sf from timer import timer from paddlespeech.t2s.exps.syn_utils import get_am_output from paddlespeech.t2s.exps.syn_utils import get_frontend from paddlespeech.t2s.exps.syn_utils import get_predictor from paddlespeech.t2s.exps.syn_utils import get_sentences from paddlespeech.t2s.exps.syn_utils import get_voc_output from paddlespeech.t2s.utils import str2bool def parse_args(): parser = argparse.ArgumentParser( description="Paddle Infernce with acoustic model & vocoder.") # acoustic model parser.add_argument( '--am', type=str, default='fastspeech2_csmsc', choices=[ 'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_aishell3', 'fastspeech2_ljspeech', 'fastspeech2_vctk', 'tacotron2_csmsc', 'fastspeech2_mix', ], help='Choose acoustic model type of tts task.') parser.add_argument( "--phones_dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--tones_dict", type=str, default=None, help="tone vocabulary file.") parser.add_argument( "--speaker_dict", type=str, default=None, help="speaker id map file.") parser.add_argument( '--spk_id', type=int, default=0, help='spk id for multi speaker acoustic model') # voc parser.add_argument( '--voc', type=str, default='pwgan_csmsc', choices=[ 'pwgan_csmsc', 'pwgan_aishell3', 'pwgan_ljspeech', 'pwgan_vctk', 'mb_melgan_csmsc', 'hifigan_csmsc', 'hifigan_aishell3', 'hifigan_ljspeech', 'hifigan_vctk', 'wavernn_csmsc', ], help='Choose vocoder type of tts task.') # other parser.add_argument( '--lang', type=str, default='zh', help='Choose model language. zh or en or mix') parser.add_argument( "--text", type=str, help="text to synthesize, a 'utt_id sentence' pair per line") parser.add_argument( "--inference_dir", type=str, help="dir to save inference models") parser.add_argument("--output_dir", type=str, help="output dir") # inference parser.add_argument( "--int8", type=str2bool, default=False, help="Whether to use int8 inference.", ) parser.add_argument( "--fp16", type=str2bool, default=False, help="Whether to use float16 inference.", ) parser.add_argument( "--device", default="gpu", choices=["gpu", "cpu"], help="Device selected for inference.", ) args, _ = parser.parse_known_args() return args # only inference for models trained with csmsc now def main(): args = parse_args() paddle.set_device(args.device) # frontend frontend = get_frontend( lang=args.lang, phones_dict=args.phones_dict, tones_dict=args.tones_dict) # am_predictor am_predictor = get_predictor( model_dir=args.inference_dir, model_file=args.am + ".pdmodel", params_file=args.am + ".pdiparams", device=args.device) # model: {model_name}_{dataset} am_dataset = args.am[args.am.rindex('_') + 1:] # voc_predictor voc_predictor = get_predictor( model_dir=args.inference_dir, model_file=args.voc + ".pdmodel", params_file=args.voc + ".pdiparams", device=args.device) output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) sentences = get_sentences(text_file=args.text, lang=args.lang) merge_sentences = True fs = 24000 if am_dataset != 'ljspeech' else 22050 # warmup for utt_id, sentence in sentences[:3]: with timer() as t: mel = get_am_output( input=sentence, am_predictor=am_predictor, am=args.am, frontend=frontend, lang=args.lang, merge_sentences=merge_sentences, speaker_dict=args.speaker_dict, spk_id=args.spk_id, ) wav = get_voc_output(voc_predictor=voc_predictor, input=mel) speed = wav.size / t.elapse rtf = fs / speed print( f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}." ) print("warm up done!") N = 0 T = 0 for utt_id, sentence in sentences: with timer() as t: mel = get_am_output( input=sentence, am_predictor=am_predictor, am=args.am, frontend=frontend, lang=args.lang, merge_sentences=merge_sentences, speaker_dict=args.speaker_dict, spk_id=args.spk_id, ) wav = get_voc_output(voc_predictor=voc_predictor, input=mel) N += wav.size T += t.elapse speed = wav.size / t.elapse rtf = fs / speed sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=fs) print( f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}." ) print(f"{utt_id} done!") print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }") if __name__ == "__main__": main()