# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from deepspeech.models.ds2_online import DeepSpeech2ModelOnline class TestDeepSpeech2ModelOnline(unittest.TestCase): def setUp(self): paddle.set_device('cpu') self.batch_size = 2 self.feat_dim = 161 max_len = 210 # (B, T, D) audio = np.random.randn(self.batch_size, max_len, self.feat_dim) audio_len = np.random.randint(max_len, size=self.batch_size) audio_len[-1] = max_len # (B, U) text = np.array([[1, 2], [1, 2]]) text_len = np.array([2] * self.batch_size) self.audio = paddle.to_tensor(audio, dtype='float32') self.audio_len = paddle.to_tensor(audio_len, dtype='int64') self.text = paddle.to_tensor(text, dtype='int32') self.text_len = paddle.to_tensor(text_len, dtype='int64') def test_ds2_1(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_2(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=True) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_3(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_4(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=True) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_5(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=3, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=False) loss = model(self.audio, self.audio_len, self.text, self.text_len) self.assertEqual(loss.numel(), 1) def test_ds2_6(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=1, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=True) model.eval() paddle.device.set_device("cpu") de_ch_size = 9 eouts, eouts_lens, final_state_list = model.encoder( self.audio, self.audio_len) eouts_by_chk_list, eouts_lens_by_chk_list, final_state_list_by_chk = model.encoder.forward_chunk_by_chunk( self.audio, self.audio_len, de_ch_size) eouts_by_chk = paddle.concat(eouts_by_chk_list, axis = 1) eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list) decode_max_len = eouts.shape[1] print ("dml", decode_max_len) eouts_by_chk = eouts_by_chk[:, :decode_max_len, :] self.assertEqual( paddle.sum( paddle.abs(paddle.subtract(eouts_lens, eouts_lens_by_chk))), 0) self.assertEqual( paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))), 0) self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True) """ print ("conv_x", conv_x) print ("conv_x_by_chk", conv_x_by_chk) print ("final_state_list", final_state_list) #print ("final_state_list_by_chk", final_state_list_by_chk) print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:])))) print (paddle.allclose(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:])) print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:])))) print (paddle.allclose(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:])) print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:])))) print (paddle.allclose(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:])) print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk)))) print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk)))) print (paddle.allclose(eouts[:,:,:], eouts_by_chk[:,:,:])) """ """ def split_into_chunk(self, x, x_lens, decoder_chunk_size, subsampling_rate, receptive_field_length): chunk_size = (decoder_chunk_size - 1 ) * subsampling_rate + receptive_field_length chunk_stride = subsampling_rate * decoder_chunk_size max_len = x.shape[1] assert (chunk_size <= max_len) x_chunk_list = [] x_chunk_lens_list = [] padding_len = chunk_stride - (max_len - chunk_size) % chunk_stride padding = paddle.zeros((x.shape[0], padding_len, x.shape[2])) padded_x = paddle.concat([x, padding], axis=1) num_chunk = (max_len + padding_len - chunk_size) / chunk_stride + 1 num_chunk = int(num_chunk) for i in range(0, num_chunk): start = i * chunk_stride end = start + chunk_size x_chunk = padded_x[:, start:end, :] x_len_left = paddle.where(x_lens - i * chunk_stride < 0, paddle.zeros_like(x_lens), x_lens - i * chunk_stride) x_chunk_len_tmp = paddle.ones_like(x_lens) * chunk_size x_chunk_lens = paddle.where(x_len_left < x_chunk_len_tmp, x_len_left, x_chunk_len_tmp) x_chunk_list.append(x_chunk) x_chunk_lens_list.append(x_chunk_lens) return x_chunk_list, x_chunk_lens_list def test_ds2_7(self): model = DeepSpeech2ModelOnline( feat_size=self.feat_dim, dict_size=10, num_conv_layers=2, num_rnn_layers=1, rnn_size=1024, num_fc_layers=2, fc_layers_size_list=[512, 256], use_gru=True) model.eval() paddle.device.set_device("cpu") de_ch_size = 9 audio_chunk_list, audio_chunk_lens_list = self.split_into_chunk( self.audio, self.audio_len, de_ch_size, model.encoder.conv.subsampling_rate, model.encoder.conv.receptive_field_length) eouts_prefix = None eouts_lens_prefix = None chunk_state_list = [None] * model.encoder.num_rnn_layers for i, audio_chunk in enumerate(audio_chunk_list): audio_chunk_lens = audio_chunk_lens_list[i] eouts_prefix, eouts_lens_prefix, chunk_state_list = model.decode_prob_by_chunk( audio_chunk, audio_chunk_lens, eouts_prefix, eouts_lens_prefix, chunk_state_list) # print (i, probs_pre_chunks.shape) probs, eouts, eouts_lens, final_state_list = model.decode_prob( self.audio, self.audio_len) decode_max_len = probs.shape[1] probs_pre_chunks = probs_pre_chunks[:, :decode_max_len, :] self.assertEqual(paddle.allclose(probs, probs_pre_chunks), True) """ if __name__ == '__main__': unittest.main()