# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Subsampling layer definition.""" from typing import Tuple import paddle from paddle import nn from deepspeech.modules.embedding import PositionalEncoding from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = [ "LinearNoSubsampling", "Conv2dSubsampling4", "Conv2dSubsampling6", "Conv2dSubsampling8" ] class BaseSubsampling(nn.Layer): def __init__(self, pos_enc_class: nn.Layer=PositionalEncoding): super().__init__() self.pos_enc = pos_enc_class # window size = (1 + right_context) + (chunk_size -1) * subsampling_rate self.right_context = 0 # stride = subsampling_rate * chunk_size self.subsampling_rate = 1 def position_encoding(self, offset: int, size: int) -> paddle.Tensor: return self.pos_enc.position_encoding(offset, size) class LinearNoSubsampling(BaseSubsampling): """Linear transform the input without subsampling.""" def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: nn.Layer=PositionalEncoding): """Construct an linear object. Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc_class (PositionalEncoding): position encoding class """ super().__init__(pos_enc_class) self.out = nn.Sequential( nn.Linear(idim, odim), nn.LayerNorm(odim, epsilon=1e-12), nn.Dropout(dropout_rate), nn.ReLU(),) self.right_context = 0 self.subsampling_rate = 1 def forward(self, x: paddle.Tensor, x_mask: paddle.Tensor, offset: int=0 ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Input x. Args: x (paddle.Tensor): Input tensor (#batch, time, idim). x_mask (paddle.Tensor): Input mask (#batch, 1, time). offset (int): position encoding offset. Returns: paddle.Tensor: linear input tensor (#batch, time', odim), where time' = time . paddle.Tensor: positional encoding paddle.Tensor: linear input mask (#batch, 1, time'), where time' = time . """ x = self.out(x) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask class Conv2dSubsampling(BaseSubsampling): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class Conv2dSubsampling4(Conv2dSubsampling): """Convolutional 2D subsampling (to 1/4 length).""" def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: nn.Layer=PositionalEncoding): """Construct an Conv2dSubsampling4 object. Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ super().__init__(pos_enc_class) self.conv = nn.Sequential( nn.Conv2D(1, odim, 3, 2), nn.ReLU(), nn.Conv2D(odim, odim, 3, 2), nn.ReLU(), ) self.out = nn.Sequential( nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)) self.subsampling_rate = 4 # The right context for every conv layer is computed by: # (kernel_size - 1) * frame_rate_of_this_layer # 6 = (3 - 1) * 1 + (3 - 1) * 2 self.right_context = 6 def forward(self, x: paddle.Tensor, x_mask: paddle.Tensor, offset: int=0 ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Subsample x. Args: x (paddle.Tensor): Input tensor (#batch, time, idim). x_mask (paddle.Tensor): Input mask (#batch, 1, time). offset (int): position encoding offset. Returns: paddle.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 4. paddle.Tensor: positional encoding paddle.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 4. """ x = x.unsqueeze(1) # (b, c=1, t, f) x = self.conv(x) b, c, t, f = paddle.shape(x) x = self.out(x.transpose([0, 2, 1, 3]).reshape([b, t, c * f])) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2] class Conv2dSubsampling6(Conv2dSubsampling): """Convolutional 2D subsampling (to 1/6 length).""" def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: nn.Layer=PositionalEncoding): """Construct an Conv2dSubsampling6 object. Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. pos_enc (PositionalEncoding): Custom position encoding layer. """ super().__init__(pos_enc_class) self.conv = nn.Sequential( nn.Conv2D(1, odim, 3, 2), nn.ReLU(), nn.Conv2D(odim, odim, 5, 3), nn.ReLU(), ) # O = (I - F + Pstart + Pend) // S + 1 # when Padding == 0, O = (I - F - S) // S self.linear = nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim) # The right context for every conv layer is computed by: # (kernel_size - 1) * frame_rate_of_this_layer # 10 = (3 - 1) * 1 + (5 - 1) * 2 self.subsampling_rate = 6 self.right_context = 10 def forward(self, x: paddle.Tensor, x_mask: paddle.Tensor, offset: int=0 ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Subsample x. Args: x (paddle.Tensor): Input tensor (#batch, time, idim). x_mask (paddle.Tensor): Input mask (#batch, 1, time). offset (int): position encoding offset. Returns: paddle.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 6. paddle.Tensor: positional encoding paddle.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 6. """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) b, c, t, f = paddle.shape(x) x = self.linear(x.transpose([0, 2, 1, 3]).reshape([b, t, c * f])) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-4:3] class Conv2dSubsampling8(Conv2dSubsampling): """Convolutional 2D subsampling (to 1/8 length).""" def __init__(self, idim: int, odim: int, dropout_rate: float, pos_enc_class: nn.Layer=PositionalEncoding): """Construct an Conv2dSubsampling8 object. Args: idim (int): Input dimension. odim (int): Output dimension. dropout_rate (float): Dropout rate. """ super().__init__(pos_enc_class) self.conv = nn.Sequential( nn.Conv2D(1, odim, 3, 2), nn.ReLU(), nn.Conv2D(odim, odim, 3, 2), nn.ReLU(), nn.Conv2D(odim, odim, 3, 2), nn.ReLU(), ) self.linear = nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim) self.subsampling_rate = 8 # The right context for every conv layer is computed by: # (kernel_size - 1) * frame_rate_of_this_layer # 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4 self.right_context = 14 def forward(self, x: paddle.Tensor, x_mask: paddle.Tensor, offset: int=0 ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Subsample x. Args: x (paddle.Tensor): Input tensor (#batch, time, idim). x_mask (paddle.Tensor): Input mask (#batch, 1, time). offset (int): position encoding offset. Returns: paddle.Tensor: Subsampled tensor (#batch, time', odim), where time' = time // 8. paddle.Tensor: positional encoding paddle.Tensor: Subsampled mask (#batch, 1, time'), where time' = time // 8. """ x = x.unsqueeze(1) # (b, c, t, f) x = self.conv(x) x = self.linear(x.transpose([0, 2, 1, 3]).reshape([b, t, c * f])) x, pos_emb = self.pos_enc(x, offset) return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2]