# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encoder definition.""" from typing import List from typing import Optional from typing import Tuple import paddle from paddle import nn from typeguard import check_argument_types from deepspeech.modules.activation import get_activation from deepspeech.modules.attention import MultiHeadedAttention from deepspeech.modules.attention import RelPositionMultiHeadedAttention from deepspeech.modules.conformer_convolution import ConvolutionModule from deepspeech.modules.embedding import PositionalEncoding from deepspeech.modules.embedding import RelPositionalEncoding from deepspeech.modules.embedding import NonePositionalEncoding from deepspeech.modules.encoder_layer import ConformerEncoderLayer from deepspeech.modules.encoder_layer import TransformerEncoderLayer from deepspeech.modules.mask import add_optional_chunk_mask from deepspeech.modules.mask import make_non_pad_mask from deepspeech.modules.positionwise_feed_forward import PositionwiseFeedForward from deepspeech.modules.subsampling import Conv2dSubsampling from deepspeech.modules.subsampling import Conv2dSubsampling4 from deepspeech.modules.subsampling import Conv2dSubsampling6 from deepspeech.modules.subsampling import Conv2dSubsampling8 from deepspeech.modules.subsampling import LinearNoSubsampling from deepspeech.utils.log import Log logger = Log(__name__).getlog() __all__ = ["BaseEncoder", 'TransformerEncoder', "ConformerEncoder"] class BaseEncoder(nn.Layer): def __init__( self, input_size: int, output_size: int=256, attention_heads: int=4, linear_units: int=2048, num_blocks: int=6, dropout_rate: float=0.1, positional_dropout_rate: float=0.1, attention_dropout_rate: float=0.0, input_layer: str="conv2d", pos_enc_layer_type: Optional[str, None]="abs_pos", normalize_before: bool=True, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_chunk: bool=False, global_cmvn: paddle.nn.Layer=None, use_dynamic_left_chunk: bool=False, ): """ Args: input_size (int): input dim, d_feature output_size (int): dimension of attention, d_model attention_heads (int): the number of heads of multi head attention linear_units (int): the hidden units number of position-wise feed forward num_blocks (int): the number of encoder blocks dropout_rate (float): dropout rate attention_dropout_rate (float): dropout rate in attention positional_dropout_rate (float): dropout rate after adding positional encoding input_layer (str): input layer type. optional [linear, conv2d, conv2d6, conv2d8] pos_enc_layer_type (str, or None): Encoder positional encoding layer type. opitonal [abs_pos, scaled_abs_pos, rel_pos, None] normalize_before (bool): True: use layer_norm before each sub-block of a layer. False: use layer_norm after each sub-block of a layer. concat_after (bool): whether to concat attention layer's input and output. True: x -> x + linear(concat(x, att(x))) False: x -> x + att(x) static_chunk_size (int): chunk size for static chunk training and decoding use_dynamic_chunk (bool): whether use dynamic chunk size for training or not, You can only use fixed chunk(chunk_size > 0) or dyanmic chunk size(use_dynamic_chunk = True) global_cmvn (Optional[paddle.nn.Layer]): Optional GlobalCMVN layer use_dynamic_left_chunk (bool): whether use dynamic left chunk in dynamic chunk training """ assert check_argument_types() super().__init__() self._output_size = output_size if pos_enc_layer_type == "abs_pos": pos_enc_class = PositionalEncoding elif pos_enc_layer_type == "rel_pos": pos_enc_class = RelPositionalEncoding elif pos_enc_layer_type is None: pos_enc_class = NonePositionalEncoding else: raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) if input_layer == "linear": subsampling_class = LinearNoSubsampling elif input_layer == "conv2d": subsampling_class = Conv2dSubsampling4 elif input_layer == "conv2d6": subsampling_class = Conv2dSubsampling6 elif input_layer == "conv2d8": subsampling_class = Conv2dSubsampling8 else: raise ValueError("unknown input_layer: " + input_layer) self.global_cmvn = global_cmvn self.embed = subsampling_class( idim=input_size, odim=output_size, dropout_rate=dropout_rate, pos_enc_class=pos_enc_class( d_model=output_size, dropout_rate=positional_dropout_rate), ) self.normalize_before = normalize_before self.after_norm = nn.LayerNorm(output_size, epsilon=1e-12) self.static_chunk_size = static_chunk_size self.use_dynamic_chunk = use_dynamic_chunk self.use_dynamic_left_chunk = use_dynamic_left_chunk def output_size(self) -> int: return self._output_size def forward( self, xs: paddle.Tensor, xs_lens: paddle.Tensor, decoding_chunk_size: int=0, num_decoding_left_chunks: int=-1, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Embed positions in tensor. Args: xs: padded input tensor (B, L, D) xs_lens: input length (B) decoding_chunk_size: decoding chunk size for dynamic chunk 0: default for training, use random dynamic chunk. <0: for decoding, use full chunk. >0: for decoding, use fixed chunk size as set. num_decoding_left_chunks: number of left chunks, this is for decoding, the chunk size is decoding_chunk_size. >=0: use num_decoding_left_chunks <0: use all left chunks Returns: encoder output tensor, lens and mask """ masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L) if self.global_cmvn is not None: xs = self.global_cmvn(xs) #TODO(Hui Zhang): self.embed(xs, masks, offset=0), stride_slice not support bool tensor xs, pos_emb, masks = self.embed(xs, masks.astype(xs.dtype), offset=0) #TODO(Hui Zhang): remove mask.astype, stride_slice not support bool tensor masks = masks.astype(paddle.bool) #TODO(Hui Zhang): mask_pad = ~masks mask_pad = masks.logical_not() chunk_masks = add_optional_chunk_mask( xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk, decoding_chunk_size, self.static_chunk_size, num_decoding_left_chunks) for layer in self.encoders: xs, chunk_masks, _ = layer(xs, chunk_masks, pos_emb, mask_pad) if self.normalize_before: xs = self.after_norm(xs) # Here we assume the mask is not changed in encoder layers, so just # return the masks before encoder layers, and the masks will be used # for cross attention with decoder later return xs, masks def forward_chunk( self, xs: paddle.Tensor, offset: int, required_cache_size: int, subsampling_cache: Optional[paddle.Tensor]=None, elayers_output_cache: Optional[List[paddle.Tensor]]=None, conformer_cnn_cache: Optional[List[paddle.Tensor]]=None, ) -> Tuple[paddle.Tensor, paddle.Tensor, List[paddle.Tensor], List[ paddle.Tensor]]: """ Forward just one chunk Args: xs (paddle.Tensor): chunk input, [B=1, T, D] offset (int): current offset in encoder output time stamp required_cache_size (int): cache size required for next chunk compuation >=0: actual cache size <0: means all history cache is required subsampling_cache (Optional[paddle.Tensor]): subsampling cache elayers_output_cache (Optional[List[paddle.Tensor]]): transformer/conformer encoder layers output cache conformer_cnn_cache (Optional[List[paddle.Tensor]]): conformer cnn cache Returns: paddle.Tensor: output of current input xs paddle.Tensor: subsampling cache required for next chunk computation List[paddle.Tensor]: encoder layers output cache required for next chunk computation List[paddle.Tensor]: conformer cnn cache """ assert xs.shape[0] == 1 # batch size must be one # tmp_masks is just for interface compatibility # TODO(Hui Zhang): stride_slice not support bool tensor # tmp_masks = paddle.ones([1, xs.size(1)], dtype=paddle.bool) tmp_masks = paddle.ones([1, xs.shape[1]], dtype=paddle.int32) tmp_masks = tmp_masks.unsqueeze(1) #[B=1, C=1, T] if self.global_cmvn is not None: xs = self.global_cmvn(xs) xs, pos_emb, _ = self.embed( xs, tmp_masks, offset=offset) #xs=(B, T, D), pos_emb=(B=1, T, D) if subsampling_cache is not None: cache_size = subsampling_cache.shape[1] #T xs = paddle.cat((subsampling_cache, xs), dim=1) else: cache_size = 0 # only used when using `RelPositionMultiHeadedAttention` pos_emb = self.embed.position_encoding( offset=offset - cache_size, size=xs.shape[1]) if required_cache_size < 0: next_cache_start = 0 elif required_cache_size == 0: next_cache_start = xs.shape[1] else: next_cache_start = xs.shape[1] - required_cache_size r_subsampling_cache = xs[:, next_cache_start:, :] # Real mask for transformer/conformer layers masks = paddle.ones([1, xs.shape[1]], dtype=paddle.bool) masks = masks.unsqueeze(1) #[B=1, L'=1, T] r_elayers_output_cache = [] r_conformer_cnn_cache = [] for i, layer in enumerate(self.encoders): attn_cache = None if elayers_output_cache is None else elayers_output_cache[ i] cnn_cache = None if conformer_cnn_cache is None else conformer_cnn_cache[ i] xs, _, new_cnn_cache = layer( xs, masks, pos_emb, output_cache=attn_cache, cnn_cache=cnn_cache) r_elayers_output_cache.append(xs[:, next_cache_start:, :]) r_conformer_cnn_cache.append(new_cnn_cache) if self.normalize_before: xs = self.after_norm(xs) return (xs[:, cache_size:, :], r_subsampling_cache, r_elayers_output_cache, r_conformer_cnn_cache) def forward_chunk_by_chunk( self, xs: paddle.Tensor, decoding_chunk_size: int, num_decoding_left_chunks: int=-1, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """ Forward input chunk by chunk with chunk_size like a streaming fashion Here we should pay special attention to computation cache in the streaming style forward chunk by chunk. Three things should be taken into account for computation in the current network: 1. transformer/conformer encoder layers output cache 2. convolution in conformer 3. convolution in subsampling However, we don't implement subsampling cache for: 1. We can control subsampling module to output the right result by overlapping input instead of cache left context, even though it wastes some computation, but subsampling only takes a very small fraction of computation in the whole model. 2. Typically, there are several covolution layers with subsampling in subsampling module, it is tricky and complicated to do cache with different convolution layers with different subsampling rate. 3. Currently, nn.Sequential is used to stack all the convolution layers in subsampling, we need to rewrite it to make it work with cache, which is not prefered. Args: xs (paddle.Tensor): (1, max_len, dim) chunk_size (int): decoding chunk size. num_left_chunks (int): decoding with num left chunks. """ assert decoding_chunk_size > 0 # The model is trained by static or dynamic chunk assert self.static_chunk_size > 0 or self.use_dynamic_chunk # feature stride and window for `subsampling` module subsampling = self.embed.subsampling_rate context = self.embed.right_context + 1 # Add current frame stride = subsampling * decoding_chunk_size decoding_window = (decoding_chunk_size - 1) * subsampling + context num_frames = xs.shape[1] required_cache_size = decoding_chunk_size * num_decoding_left_chunks subsampling_cache: Optional[paddle.Tensor] = None elayers_output_cache: Optional[List[paddle.Tensor]] = None conformer_cnn_cache: Optional[List[paddle.Tensor]] = None outputs = [] offset = 0 # Feed forward overlap input step by step for cur in range(0, num_frames - context + 1, stride): end = min(cur + decoding_window, num_frames) chunk_xs = xs[:, cur:end, :] (y, subsampling_cache, elayers_output_cache, conformer_cnn_cache) = self.forward_chunk( chunk_xs, offset, required_cache_size, subsampling_cache, elayers_output_cache, conformer_cnn_cache) outputs.append(y) offset += y.shape[1] ys = paddle.cat(outputs, 1) # fake mask, just for jit script and compatibility with `forward` api masks = paddle.ones([1, ys.shape[1]], dtype=paddle.bool) masks = masks.unsqueeze(1) return ys, masks class TransformerEncoder(BaseEncoder): """Transformer encoder module.""" def __init__( self, input_size: int, output_size: int=256, attention_heads: int=4, linear_units: int=2048, num_blocks: int=6, dropout_rate: float=0.1, positional_dropout_rate: float=0.1, attention_dropout_rate: float=0.0, input_layer: str="conv2d", pos_enc_layer_type: str="abs_pos", normalize_before: bool=True, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_chunk: bool=False, global_cmvn: nn.Layer=None, use_dynamic_left_chunk: bool=False, ): """ Construct TransformerEncoder See Encoder for the meaning of each parameter. """ assert check_argument_types() super().__init__(input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, normalize_before, concat_after, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk) self.encoders = nn.LayerList([ TransformerEncoderLayer( size=output_size, self_attn=MultiHeadedAttention(attention_heads, output_size, attention_dropout_rate), feed_forward=PositionwiseFeedForward(output_size, linear_units, dropout_rate), dropout_rate=dropout_rate, normalize_before=normalize_before, concat_after=concat_after) for _ in range(num_blocks) ]) def forward_one_step( self, xs: paddle.Tensor, masks: paddle.Tensor, cache=None, ) -> Tuple[paddle.Tensor, paddle.Tensor]: """Encode input frame. Args: xs (paddle.Tensor): Input tensor. (B, T, D) masks (paddle.Tensor): Mask tensor. (B, 1, T) cache (List[paddle.Tensor]): List of cache tensors. Returns: paddle.Tensor: Output tensor. paddle.Tensor: Mask tensor. List[paddle.Tensor]: List of new cache tensors. """ if self.global_cmvn is not None: xs = self.global_cmvn(xs) if isinstance(self.embed, Conv2dSubsampling): # xs, masks = self.embed(xs, masks) #TODO(Hui Zhang): self.embed(xs, masks, offset=0), stride_slice not support bool tensor xs, pos_emb, masks = self.embed(xs, masks.astype(xs.dtype), offset=0) else: xs = self.embed(xs) #TODO(Hui Zhang): remove mask.astype, stride_slice not support bool tensor masks = masks.astype(paddle.bool) if cache is None: cache = [None for _ in range(len(self.encoders))] new_cache = [] for c, e in zip(cache, self.encoders): xs, masks, _ = e(xs, masks, output_cache=c) new_cache.append(xs) if self.normalize_before: xs = self.after_norm(xs) return xs, masks, new_cache class ConformerEncoder(BaseEncoder): """Conformer encoder module.""" def __init__( self, input_size: int, output_size: int=256, attention_heads: int=4, linear_units: int=2048, num_blocks: int=6, dropout_rate: float=0.1, positional_dropout_rate: float=0.1, attention_dropout_rate: float=0.0, input_layer: str="conv2d", pos_enc_layer_type: str="rel_pos", normalize_before: bool=True, concat_after: bool=False, static_chunk_size: int=0, use_dynamic_chunk: bool=False, global_cmvn: nn.Layer=None, use_dynamic_left_chunk: bool=False, positionwise_conv_kernel_size: int=1, macaron_style: bool=True, selfattention_layer_type: str="rel_selfattn", activation_type: str="swish", use_cnn_module: bool=True, cnn_module_kernel: int=15, causal: bool=False, cnn_module_norm: str="batch_norm", ): """Construct ConformerEncoder Args: input_size to use_dynamic_chunk, see in BaseEncoder positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. macaron_style (bool): Whether to use macaron style for positionwise layer. selfattention_layer_type (str): Encoder attention layer type, the parameter has no effect now, it's just for configure compatibility. activation_type (str): Encoder activation function type. use_cnn_module (bool): Whether to use convolution module. cnn_module_kernel (int): Kernel size of convolution module. causal (bool): whether to use causal convolution or not. cnn_module_norm (str): cnn conv norm type, Optional['batch_norm','layer_norm'] """ assert check_argument_types() super().__init__(input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, normalize_before, concat_after, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk) activation = get_activation(activation_type) # self-attention module definition encoder_selfattn_layer = RelPositionMultiHeadedAttention encoder_selfattn_layer_args = (attention_heads, output_size, attention_dropout_rate) # feed-forward module definition positionwise_layer = PositionwiseFeedForward positionwise_layer_args = (output_size, linear_units, dropout_rate, activation) # convolution module definition convolution_layer = ConvolutionModule convolution_layer_args = (output_size, cnn_module_kernel, activation, cnn_module_norm, causal) self.encoders = nn.LayerList([ ConformerEncoderLayer( size=output_size, self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args), feed_forward=positionwise_layer(*positionwise_layer_args), feed_forward_macaron=positionwise_layer( *positionwise_layer_args) if macaron_style else None, conv_module=convolution_layer(*convolution_layer_args) if use_cnn_module else None, dropout_rate=dropout_rate, normalize_before=normalize_before, concat_after=concat_after) for _ in range(num_blocks) ])