# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import kaldiio import numpy as np import soundfile from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline from deepspeech.utils.log import Log __all__ = ["LoadInputsAndTargets"] logger = Log(__name__).getlog() class LoadInputsAndTargets(): """Create a mini-batch from a list of dicts >>> batch = [('utt1', ... dict(input=[dict(feat='some.ark:123', ... filetype='mat', ... name='input1', ... shape=[100, 80])], ... output=[dict(tokenid='1 2 3 4', ... name='target1', ... shape=[4, 31])]])) >>> l = LoadInputsAndTargets() >>> feat, target = l(batch) :param: str mode: Specify the task mode, "asr" or "tts" :param: str preprocess_conf: The path of a json file for pre-processing :param: bool load_input: If False, not to load the input data :param: bool load_output: If False, not to load the output data :param: bool sort_in_input_length: Sort the mini-batch in descending order of the input length :param: bool use_speaker_embedding: Used for tts mode only :param: bool use_second_target: Used for tts mode only :param: dict preprocess_args: Set some optional arguments for preprocessing :param: Optional[dict] preprocess_args: Used for tts mode only """ def __init__( self, mode="asr", preprocess_conf=None, load_input=True, load_output=True, sort_in_input_length=True, preprocess_args=None, keep_all_data_on_mem=False, ): self._loaders = {} if mode not in ["asr"]: raise ValueError("Only asr are allowed: mode={}".format(mode)) if preprocess_conf is not None: with open(preprocess_conf, 'r') as fin: self.preprocessing = AugmentationPipeline(fin.read()) logger.warning( "[Experimental feature] Some preprocessing will be done " "for the mini-batch creation using {}".format( self.preprocessing)) else: # If conf doesn't exist, this function don't touch anything. self.preprocessing = None self.mode = mode self.load_output = load_output self.load_input = load_input self.sort_in_input_length = sort_in_input_length if preprocess_args is None: self.preprocess_args = {} else: assert isinstance(preprocess_args, dict), type(preprocess_args) self.preprocess_args = dict(preprocess_args) self.keep_all_data_on_mem = keep_all_data_on_mem def __call__(self, batch, return_uttid=False): """Function to load inputs and targets from list of dicts :param List[Tuple[str, dict]] batch: list of dict which is subset of loaded data.json :param bool return_uttid: return utterance ID information for visualization :return: list of input token id sequences [(L_1), (L_2), ..., (L_B)] :return: list of input feature sequences [(T_1, D), (T_2, D), ..., (T_B, D)] :rtype: list of float ndarray :return: list of target token id sequences [(L_1), (L_2), ..., (L_B)] :rtype: list of int ndarray """ x_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]] y_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]] uttid_list = [] # List[str] for uttid, info in batch: uttid_list.append(uttid) if self.load_input: # Note(kamo): This for-loop is for multiple inputs for idx, inp in enumerate(info["input"]): # {"input": # [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "hdf5", # "name": "input1", ...}], ...} x = self._get_from_loader( filepath=inp["feat"], filetype=inp.get("filetype", "mat")) x_feats_dict.setdefault(inp["name"], []).append(x) if self.load_output: for idx, inp in enumerate(info["output"]): if "tokenid" in inp: # ======= Legacy format for output ======= # {"output": [{"tokenid": "1 2 3 4"}]) x = np.fromiter( map(int, inp["tokenid"].split()), dtype=np.int64) else: # ======= New format ======= # {"input": # [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "hdf5", # "name": "target1", ...}], ...} x = self._get_from_loader( filepath=inp["feat"], filetype=inp.get("filetype", "mat")) y_feats_dict.setdefault(inp["name"], []).append(x) if self.mode == "asr": return_batch, uttid_list = self._create_batch_asr( x_feats_dict, y_feats_dict, uttid_list) else: raise NotImplementedError(self.mode) if self.preprocessing is not None: # Apply pre-processing all input features for x_name in return_batch.keys(): if x_name.startswith("input"): return_batch[x_name] = self.preprocessing( return_batch[x_name], uttid_list, **self.preprocess_args) if return_uttid: return tuple(return_batch.values()), uttid_list # Doesn't return the names now. return tuple(return_batch.values()) def _create_batch_asr(self, x_feats_dict, y_feats_dict, uttid_list): """Create a OrderedDict for the mini-batch :param OrderedDict x_feats_dict: e.g. {"input1": [ndarray, ndarray, ...], "input2": [ndarray, ndarray, ...]} :param OrderedDict y_feats_dict: e.g. {"target1": [ndarray, ndarray, ...], "target2": [ndarray, ndarray, ...]} :param: List[str] uttid_list: Give uttid_list to sort in the same order as the mini-batch :return: batch, uttid_list :rtype: Tuple[OrderedDict, List[str]] """ # handle single-input and multi-input (paralell) asr mode xs = list(x_feats_dict.values()) if self.load_output: ys = list(y_feats_dict.values()) assert len(xs[0]) == len(ys[0]), (len(xs[0]), len(ys[0])) # get index of non-zero length samples nonzero_idx = list( filter(lambda i: len(ys[0][i]) > 0, range(len(ys[0])))) for n in range(1, len(y_feats_dict)): nonzero_idx = filter(lambda i: len(ys[n][i]) > 0, nonzero_idx) else: # Note(kamo): Be careful not to make nonzero_idx to a generator nonzero_idx = list(range(len(xs[0]))) if self.sort_in_input_length: # sort in input lengths based on the first input nonzero_sorted_idx = sorted( nonzero_idx, key=lambda i: -len(xs[0][i])) else: nonzero_sorted_idx = nonzero_idx if len(nonzero_sorted_idx) != len(xs[0]): logger.warning( "Target sequences include empty tokenid (batch {} -> {}).". format(len(xs[0]), len(nonzero_sorted_idx))) # remove zero-length samples xs = [[x[i] for i in nonzero_sorted_idx] for x in xs] uttid_list = [uttid_list[i] for i in nonzero_sorted_idx] x_names = list(x_feats_dict.keys()) if self.load_output: ys = [[y[i] for i in nonzero_sorted_idx] for y in ys] y_names = list(y_feats_dict.keys()) # Keeping x_name and y_name, e.g. input1, for future extension return_batch = OrderedDict([ * [(x_name, x) for x_name, x in zip(x_names, xs)], * [(y_name, y) for y_name, y in zip(y_names, ys)], ]) else: return_batch = OrderedDict( [(x_name, x) for x_name, x in zip(x_names, xs)]) return return_batch, uttid_list def _get_from_loader(self, filepath, filetype): """Return ndarray In order to make the fds to be opened only at the first referring, the loader are stored in self._loaders >>> ndarray = loader.get_from_loader( ... 'some/path.h5:F01_050C0101_PED_REAL', filetype='hdf5') :param: str filepath: :param: str filetype: :return: :rtype: np.ndarray """ if filetype == "hdf5": # e.g. # {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "hdf5", # -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL" filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = h5py.File(filepath, "r") self._loaders[filepath] = loader return loader[key][()] elif filetype == "sound.hdf5": # e.g. # {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "sound.hdf5", # -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL" filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = SoundHDF5File(filepath, "r", dtype="int16") self._loaders[filepath] = loader array, rate = loader[key] return array elif filetype == "sound": # e.g. # {"input": [{"feat": "some/path.wav", # "filetype": "sound"}, # Assume PCM16 if not self.keep_all_data_on_mem: array, _ = soundfile.read(filepath, dtype="int16") return array if filepath not in self._loaders: array, _ = soundfile.read(filepath, dtype="int16") self._loaders[filepath] = array return self._loaders[filepath] elif filetype == "npz": # e.g. # {"input": [{"feat": "some/path.npz:F01_050C0101_PED_REAL", # "filetype": "npz", filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = np.load(filepath) self._loaders[filepath] = loader return loader[key] elif filetype == "npy": # e.g. # {"input": [{"feat": "some/path.npy", # "filetype": "npy"}, if not self.keep_all_data_on_mem: return np.load(filepath) if filepath not in self._loaders: self._loaders[filepath] = np.load(filepath) return self._loaders[filepath] elif filetype in ["mat", "vec"]: # e.g. # {"input": [{"feat": "some/path.ark:123", # "filetype": "mat"}]}, # In this case, "123" indicates the starting points of the matrix # load_mat can load both matrix and vector if not self.keep_all_data_on_mem: return kaldiio.load_mat(filepath) if filepath not in self._loaders: self._loaders[filepath] = kaldiio.load_mat(filepath) return self._loaders[filepath] elif filetype == "scp": # e.g. # {"input": [{"feat": "some/path.scp:F01_050C0101_PED_REAL", # "filetype": "scp", filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = kaldiio.load_scp(filepath) self._loaders[filepath] = loader return loader[key] else: raise NotImplementedError( "Not supported: loader_type={}".format(filetype)) def file_type(self, filepath): suffix = filepath.split(":")[0].split('.')[-1].lower() if suffix == 'ark': return 'mat' elif suffix == 'scp': return 'scp' elif suffix == 'npy': return 'npy' elif suffix == 'npz': return 'npz' elif suffix in ['wav', 'flac']: # PCM16 return 'sound' else: raise ValueError(f"Not support filetype: {suffix}") class SoundHDF5File(): """Collecting sound files to a HDF5 file >>> f = SoundHDF5File('a.flac.h5', mode='a') >>> array = np.random.randint(0, 100, 100, dtype=np.int16) >>> f['id'] = (array, 16000) >>> array, rate = f['id'] :param: str filepath: :param: str mode: :param: str format: The type used when saving wav. flac, nist, htk, etc. :param: str dtype: """ def __init__(self, filepath, mode="r+", format=None, dtype="int16", **kwargs): self.filepath = filepath self.mode = mode self.dtype = dtype self.file = h5py.File(filepath, mode, **kwargs) if format is None: # filepath = a.flac.h5 -> format = flac second_ext = os.path.splitext(os.path.splitext(filepath)[0])[1] format = second_ext[1:] if format.upper() not in soundfile.available_formats(): # If not found, flac is selected format = "flac" # This format affects only saving self.format = format def __repr__(self): return ''.format( self.filepath, self.mode, self.format, self.dtype) def create_dataset(self, name, shape=None, data=None, **kwds): f = io.BytesIO() array, rate = data soundfile.write(f, array, rate, format=self.format) self.file.create_dataset( name, shape=shape, data=np.void(f.getvalue()), **kwds) def __setitem__(self, name, data): self.create_dataset(name, data=data) def __getitem__(self, key): data = self.file[key][()] f = io.BytesIO(data.tobytes()) array, rate = soundfile.read(f, dtype=self.dtype) return array, rate def keys(self): return self.file.keys() def values(self): for k in self.file: yield self[k] def items(self): for k in self.file: yield k, self[k] def __iter__(self): return iter(self.file) def __contains__(self, item): return item in self.file def __len__(self, item): return len(self.file) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.file.close() def close(self): self.file.close()