# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import time from collections import OrderedDict from typing import Optional import numpy as np import paddle import yaml from paddlespeech.cli.cls.infer import CLSExecutor from paddlespeech.cli.log import logger from paddlespeech.resource import CommonTaskResource from paddlespeech.server.engine.base_engine import BaseEngine from paddlespeech.server.utils.paddle_predictor import init_predictor from paddlespeech.server.utils.paddle_predictor import run_model __all__ = ['CLSEngine', 'PaddleCLSConnectionHandler'] class CLSServerExecutor(CLSExecutor): def __init__(self): super().__init__() self.task_resource = CommonTaskResource( task='cls', model_format='static') def _init_from_path( self, model_type: str='panns_cnn14_audioset', cfg_path: Optional[os.PathLike]=None, model_path: Optional[os.PathLike]=None, params_path: Optional[os.PathLike]=None, label_file: Optional[os.PathLike]=None, predictor_conf: dict=None, ): """ Init model and other resources from a specific path. """ if cfg_path is None or model_path is None or params_path is None or label_file is None: tag = model_type + '-' + '32k' self.task_resource.set_task_model(model_tag=tag) self.res_path = self.task_resource.res_dir self.cfg_path = os.path.join( self.res_path, self.task_resource.res_dict['cfg_path']) self.model_path = os.path.join( self.res_path, self.task_resource.res_dict['model_path']) self.params_path = os.path.join( self.res_path, self.task_resource.res_dict['params_path']) self.label_file = os.path.join( self.res_path, self.task_resource.res_dict['label_file']) else: self.cfg_path = os.path.abspath(cfg_path) self.model_path = os.path.abspath(model_path) self.params_path = os.path.abspath(params_path) self.label_file = os.path.abspath(label_file) logger.info(self.cfg_path) logger.info(self.model_path) logger.info(self.params_path) logger.info(self.label_file) # config with open(self.cfg_path, 'r') as f: self._conf = yaml.safe_load(f) logger.info("Read cfg file successfully.") # labels self._label_list = [] with open(self.label_file, 'r') as f: for line in f: self._label_list.append(line.strip()) logger.info("Read label file successfully.") # Create predictor self.predictor_conf = predictor_conf self.predictor = init_predictor( model_file=self.model_path, params_file=self.params_path, predictor_conf=self.predictor_conf) logger.info("Create predictor successfully.") @paddle.no_grad() def infer(self): """ Model inference and result stored in self.output. """ output = run_model(self.predictor, [self._inputs['feats'].numpy()]) self._outputs['logits'] = output[0] class CLSEngine(BaseEngine): """CLS server engine Args: metaclass: Defaults to Singleton. """ def __init__(self): super(CLSEngine, self).__init__() def init(self, config: dict) -> bool: """init engine resource Args: config_file (str): config file Returns: bool: init failed or success """ self.executor = CLSServerExecutor() self.config = config self.engine_type = "inference" try: if self.config.predictor_conf.device is not None: self.device = self.config.predictor_conf.device else: self.device = paddle.get_device() paddle.set_device(self.device) except Exception as e: logger.error( "Set device failed, please check if device is already used and the parameter 'device' in the yaml file" ) logger.error(e) return False try: self.executor._init_from_path( self.config.model_type, self.config.cfg_path, self.config.model_path, self.config.params_path, self.config.label_file, self.config.predictor_conf) except Exception as e: logger.error("Initialize CLS server engine Failed.") logger.error(e) return False logger.info("Initialize CLS server engine successfully.") return True class PaddleCLSConnectionHandler(CLSServerExecutor): def __init__(self, cls_engine): """The PaddleSpeech CLS Server Connection Handler This connection process every cls server request Args: cls_engine (CLSEngine): The CLS engine """ super().__init__() logger.info( "Create PaddleCLSConnectionHandler to process the cls request") self._inputs = OrderedDict() self._outputs = OrderedDict() self.cls_engine = cls_engine self.executor = self.cls_engine.executor self._conf = self.executor._conf self._label_list = self.executor._label_list self.predictor = self.executor.predictor def run(self, audio_data): """engine run Args: audio_data (bytes): base64.b64decode """ self.preprocess(io.BytesIO(audio_data)) st = time.time() self.infer() infer_time = time.time() - st logger.info("inference time: {}".format(infer_time)) logger.info("cls engine type: inference") def postprocess(self, topk: int): """postprocess """ assert topk <= len( self._label_list), 'Value of topk is larger than number of labels.' result = np.squeeze(self._outputs['logits'], axis=0) topk_idx = (-result).argsort()[:topk] topk_results = [] for idx in topk_idx: res = {} label, score = self._label_list[idx], result[idx] res['class_name'] = label res['prob'] = score topk_results.append(res) return topk_results