([简体中文](./README_cn.md)|English) # Speech Server ## Introduction This demo is an implementation of starting the voice service and accessing the service. It can be achieved with a single command using `paddlespeech_server` and `paddlespeech_client` or a few lines of code in python. For service interface definition, please check: - [PaddleSpeech Server RESTful API](https://github.com/PaddlePaddle/PaddleSpeech/wiki/PaddleSpeech-Server-RESTful-API) ## Usage ### 1. Installation see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md). It is recommended to use **paddlepaddle 2.3.1** or above. You can choose one way from easy, meduim and hard to install paddlespeech. **If you install in easy mode, you need to prepare the yaml file by yourself, you can refer to the yaml file in the conf directory.** ### 2. Prepare config File The configuration file can be found in `conf/application.yaml` . Among them, `engine_list` indicates the speech engine that will be included in the service to be started, in the format of `_`. At present, the speech tasks integrated by the service include: asr (speech recognition), tts (text to sppech) and cls (audio classification). Currently the engine type supports two forms: python and inference (Paddle Inference) **Note:** If the service can be started normally in the container, but the client access IP is unreachable, you can try to replace the `host` address in the configuration file with the local IP address. ### 3. Server Usage - Command Line (Recommended) ```bash # start the service paddlespeech_server start --config_file ./conf/application.yaml ``` Usage: ```bash paddlespeech_server start --help ``` Arguments: - `config_file`: yaml file of the app, defalut: ./conf/application.yaml - `log_file`: log file. Default: ./log/paddlespeech.log Output: ```text [2022-02-23 11:17:32] [INFO] [server.py:64] Started server process [6384] INFO: Waiting for application startup. [2022-02-23 11:17:32] [INFO] [on.py:26] Waiting for application startup. INFO: Application startup complete. [2022-02-23 11:17:32] [INFO] [on.py:38] Application startup complete. INFO: Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit) [2022-02-23 11:17:32] [INFO] [server.py:204] Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit) ``` - Python API ```python from paddlespeech.server.bin.paddlespeech_server import ServerExecutor server_executor = ServerExecutor() server_executor( config_file="./conf/application.yaml", log_file="./log/paddlespeech.log") ``` Output: ```text INFO: Started server process [529] [2022-02-23 14:57:56] [INFO] [server.py:64] Started server process [529] INFO: Waiting for application startup. [2022-02-23 14:57:56] [INFO] [on.py:26] Waiting for application startup. INFO: Application startup complete. [2022-02-23 14:57:56] [INFO] [on.py:38] Application startup complete. INFO: Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit) [2022-02-23 14:57:56] [INFO] [server.py:204] Uvicorn running on http://0.0.0.0:8090 (Press CTRL+C to quit) ``` ### 4. ASR Client Usage The input of ASR client demo should be a WAV file(`.wav`), and the sample rate must be the same as the model. Here are sample files for this ASR client demo that can be downloaded: ```bash wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav ``` **Note:** The response time will be slightly longer when using the client for the first time - Command Line (Recommended) If `127.0.0.1` is not accessible, you need to use the actual service IP address. ``` paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input ./zh.wav ``` Usage: ```bash paddlespeech_client asr --help ``` Arguments: - `server_ip`: server ip. Default: 127.0.0.1 - `port`: server port. Default: 8090 - `input`(required): Audio file to be recognized. - `sample_rate`: Audio ampling rate, default: 16000. - `lang`: Language. Default: "zh_cn". - `audio_format`: Audio format. Default: "wav". Output: ```text [2022-08-01 07:54:01,646] [ INFO] - ASR result: 我认为跑步最重要的就是给我带来了身体健康 [2022-08-01 07:54:01,646] [ INFO] - Response time 4.898965 s. ``` - Python API ```python from paddlespeech.server.bin.paddlespeech_client import ASRClientExecutor asrclient_executor = ASRClientExecutor() res = asrclient_executor( input="./zh.wav", server_ip="127.0.0.1", port=8090, sample_rate=16000, lang="zh_cn", audio_format="wav") print(res) ``` Output: ```text 我认为跑步最重要的就是给我带来了身体健康 ``` ### 5. TTS Client Usage **Note:** The response time will be slightly longer when using the client for the first time - Command Line (Recommended) If `127.0.0.1` is not accessible, you need to use the actual service IP address ```bash paddlespeech_client tts --server_ip 127.0.0.1 --port 8090 --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav ``` Usage: ```bash paddlespeech_client tts --help ``` Arguments: - `server_ip`: server ip. Default: 127.0.0.1 - `port`: server port. Default: 8090 - `input`(required): Input text to generate. - `spk_id`: Speaker id for multi-speaker text to speech. Default: 0 - `speed`: Audio speed, the value should be set between 0 and 3. Default: 1.0 - `volume`: Audio volume, the value should be set between 0 and 3. Default: 1.0 - `sample_rate`: Sampling rate, choice: [0, 8000, 16000], the default is the same as the model. Default: 0 - `output`: Output wave filepath. Default: None, which means not to save the audio to the local. Output: ```text [2022-02-23 15:20:37,875] [ INFO] - Save synthesized audio successfully on output.wav. [2022-02-23 15:20:37,875] [ INFO] - Audio duration: 3.612500 s. [2022-02-23 15:20:37,875] [ INFO] - Response time: 0.348050 s. ``` - Python API ```python from paddlespeech.server.bin.paddlespeech_client import TTSClientExecutor import json ttsclient_executor = TTSClientExecutor() res = ttsclient_executor( input="您好,欢迎使用百度飞桨语音合成服务。", server_ip="127.0.0.1", port=8090, spk_id=0, speed=1.0, volume=1.0, sample_rate=0, output="./output.wav") response_dict = res.json() print(response_dict["message"]) print("Save synthesized audio successfully on %s." % (response_dict['result']['save_path'])) print("Audio duration: %f s." %(response_dict['result']['duration'])) ``` Output: ```text {'description': 'success.'} Save synthesized audio successfully on ./output.wav. Audio duration: 3.612500 s. ``` ### 6. CLS Client Usage Here are sample files for this CLS Client demo that can be downloaded: ```bash wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav ``` **Note:** The response time will be slightly longer when using the client for the first time - Command Line (Recommended) If `127.0.0.1` is not accessible, you need to use the actual service IP address. ```bash paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav ``` Usage: ```bash paddlespeech_client cls --help ``` Arguments: - `server_ip`: server ip. Default: 127.0.0.1 - `port`: server port. Default: 8090 - `input`(required): Audio file to be classified. - `topk`: topk scores of classification result. Output: ```text [2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}} [2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s. ``` - Python API ```python from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor import json clsclient_executor = CLSClientExecutor() res = clsclient_executor( input="./zh.wav", server_ip="127.0.0.1", port=8090, topk=1) print(res.json()) ``` Output: ```text {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}} ``` ### 7. Speaker Verification Client Usage Here are sample files for this Speaker Verification Client demo that can be downloaded: ```bash wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav wget -c https://paddlespeech.bj.bcebos.com/vector/audio/123456789.wav ``` #### 7.1 Extract speaker embedding **Note:** The response time will be slightly longer when using the client for the first time - Command Line (Recommended) If `127.0.0.1` is not accessible, you need to use the actual service IP address. ``` bash paddlespeech_client vector --task spk --server_ip 127.0.0.1 --port 8090 --input 85236145389.wav ``` Usage: ``` bash paddlespeech_client vector --help ``` Arguments: * server_ip: server ip. Default: 127.0.0.1 * port: server port. Default: 8090 * input(required): Input text to generate. * task: the task of vector, can be use 'spk' or 'score。Default is 'spk'。 * enroll: enroll audio * test: test audio Output: ```text [2022-08-01 09:01:22,151] [ INFO] - vector http client start [2022-08-01 09:01:22,152] [ INFO] - the input audio: 85236145389.wav [2022-08-01 09:01:22,152] [ INFO] - endpoint: http://127.0.0.1:8090/paddlespeech/vector [2022-08-01 09:01:27,093] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'vec': [1.4217487573623657, 5.626248836517334, -5.342073440551758, 1.177390217781067, 3.308061122894287, 1.7565997838974, 5.1678876876831055, 10.806346893310547, -3.822679042816162, -5.614130973815918, 2.6238481998443604, -0.8072965741157532, 1.963512659072876, -7.312864780426025, 0.011034967377781868, -9.723127365112305, 0.661963164806366, -6.976816654205322, 10.213465690612793, 7.494767189025879, 2.9105641841888428, 3.894925117492676, 3.7999846935272217, 7.106173992156982, 16.905324935913086, -7.149376392364502, 8.733112335205078, 3.423002004623413, -4.831653118133545, -11.403371810913086, 11.232216835021973, 7.127464771270752, -4.282831192016602, 2.4523589611053467, -5.13075065612793, -18.17765998840332, -2.611666440963745, -11.00034236907959, -6.731431007385254, 1.6564655303955078, 0.7618184685707092, 1.1253058910369873, -2.0838277339935303, 4.725739002227783, -8.782590866088867, -3.5398736000061035, 3.8142387866973877, 5.142062664031982, 2.162053346633911, 4.09642219543457, -6.416221618652344, 12.747454643249512, 1.9429889917373657, -15.152948379516602, 6.417416572570801, 16.097013473510742, -9.716649055480957, -1.9920448064804077, -3.364956855773926, -1.8719490766525269, 11.567351341247559, 3.6978795528411865, 11.258269309997559, 7.442364692687988, 9.183405876159668, 4.528151512145996, -1.2417811155319214, 4.395910263061523, 6.672768592834473, 5.889888763427734, 7.627115249633789, -0.6692016124725342, -11.889703750610352, -9.208883285522461, -7.427401542663574, -3.777655601501465, 6.917237758636475, -9.848749160766602, -2.094479560852051, -5.1351189613342285, 0.49564215540885925, 9.317541122436523, -5.9141845703125, -1.809845209121704, -0.11738205701112747, -7.169270992279053, -1.0578246116638184, -5.721685886383057, -5.117387294769287, 16.137670516967773, -4.473618984222412, 7.66243314743042, -0.5538089871406555, 9.631582260131836, -6.470466613769531, -8.54850959777832, 4.371622085571289, -0.7970349192619324, 4.479003429412842, -2.9758646488189697, 3.2721707820892334, 2.8382749557495117, 5.1345953941345215, -9.19078254699707, -0.5657423138618469, -4.874573230743408, 2.316561460494995, -5.984307289123535, -2.1798791885375977, 0.35541653633117676, -0.3178458511829376, 9.493547439575195, 2.114448070526123, 4.358088493347168, -12.089820861816406, 8.451695442199707, -7.925461769104004, 4.624246120452881, 4.428938388824463, 18.691999435424805, -2.620460033416748, -5.149182319641113, -0.3582168221473694, 8.488557815551758, 4.98148250579834, -9.326834678649902, -2.2544236183166504, 6.64176607131958, 1.2119656801223755, 10.977132797241211, 16.55504035949707, 3.323848247528076, 9.55185317993164, -1.6677050590515137, -0.7953923940658569, -8.605660438537598, -0.4735637903213501, 2.6741855144500732, -5.359188079833984, -2.6673784255981445, 0.6660736799240112, 15.443212509155273, 4.740597724914551, -3.4725306034088135, 11.592561721801758, -2.05450701713562, 1.7361239194869995, -8.26533031463623, -9.304476737976074, 5.406835079193115, -1.5180232524871826, -7.746610641479492, -6.089605331420898, 0.07112561166286469, -0.34904858469963074, -8.649889945983887, -9.998958587646484, -2.5648481845855713, -0.5399898886680603, 2.6018145084381104, -0.31927648186683655, -1.8815231323242188, -2.0721378326416016, -3.4105639457702637, -8.299802780151367, 1.4836379289627075, -15.366002082824707, -8.288193702697754, 3.884773015975952, -3.4876506328582764, 7.362995624542236, 0.4657321572303772, 3.1326000690460205, 12.438883781433105, -1.8337029218673706, 4.532927513122559, 2.726433277130127, 10.145345687866211, -6.521956920623779, 2.8971481323242188, -3.3925881385803223, 5.079156398773193, 7.759725093841553, 4.677562236785889, 5.8457818031311035, 2.4023921489715576, 7.707108974456787, 3.9711389541625977, -6.390035152435303, 6.126871109008789, -3.776031017303467, -11.118141174316406]}} [2022-08-01 09:01:27,094] [ INFO] - Response time 4.941739 s. ``` * Python API ``` python from paddlespeech.server.bin.paddlespeech_client import VectorClientExecutor import json vectorclient_executor = VectorClientExecutor() res = vectorclient_executor( input="85236145389.wav", server_ip="127.0.0.1", port=8090, task="spk") print(res.json()) ``` Output: ```text {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'vec': [1.4217487573623657, 5.626248836517334, -5.342073440551758, 1.177390217781067, 3.308061122894287, 1.7565997838974, 5.1678876876831055, 10.806346893310547, -3.822679042816162, -5.614130973815918, 2.6238481998443604, -0.8072965741157532, 1.963512659072876, -7.312864780426025, 0.011034967377781868, -9.723127365112305, 0.661963164806366, -6.976816654205322, 10.213465690612793, 7.494767189025879, 2.9105641841888428, 3.894925117492676, 3.7999846935272217, 7.106173992156982, 16.905324935913086, -7.149376392364502, 8.733112335205078, 3.423002004623413, -4.831653118133545, -11.403371810913086, 11.232216835021973, 7.127464771270752, -4.282831192016602, 2.4523589611053467, -5.13075065612793, -18.17765998840332, -2.611666440963745, -11.00034236907959, -6.731431007385254, 1.6564655303955078, 0.7618184685707092, 1.1253058910369873, -2.0838277339935303, 4.725739002227783, -8.782590866088867, -3.5398736000061035, 3.8142387866973877, 5.142062664031982, 2.162053346633911, 4.09642219543457, -6.416221618652344, 12.747454643249512, 1.9429889917373657, -15.152948379516602, 6.417416572570801, 16.097013473510742, -9.716649055480957, -1.9920448064804077, -3.364956855773926, -1.8719490766525269, 11.567351341247559, 3.6978795528411865, 11.258269309997559, 7.442364692687988, 9.183405876159668, 4.528151512145996, -1.2417811155319214, 4.395910263061523, 6.672768592834473, 5.889888763427734, 7.627115249633789, -0.6692016124725342, -11.889703750610352, -9.208883285522461, -7.427401542663574, -3.777655601501465, 6.917237758636475, -9.848749160766602, -2.094479560852051, -5.1351189613342285, 0.49564215540885925, 9.317541122436523, -5.9141845703125, -1.809845209121704, -0.11738205701112747, -7.169270992279053, -1.0578246116638184, -5.721685886383057, -5.117387294769287, 16.137670516967773, -4.473618984222412, 7.66243314743042, -0.5538089871406555, 9.631582260131836, -6.470466613769531, -8.54850959777832, 4.371622085571289, -0.7970349192619324, 4.479003429412842, -2.9758646488189697, 3.2721707820892334, 2.8382749557495117, 5.1345953941345215, -9.19078254699707, -0.5657423138618469, -4.874573230743408, 2.316561460494995, -5.984307289123535, -2.1798791885375977, 0.35541653633117676, -0.3178458511829376, 9.493547439575195, 2.114448070526123, 4.358088493347168, -12.089820861816406, 8.451695442199707, -7.925461769104004, 4.624246120452881, 4.428938388824463, 18.691999435424805, -2.620460033416748, -5.149182319641113, -0.3582168221473694, 8.488557815551758, 4.98148250579834, -9.326834678649902, -2.2544236183166504, 6.64176607131958, 1.2119656801223755, 10.977132797241211, 16.55504035949707, 3.323848247528076, 9.55185317993164, -1.6677050590515137, -0.7953923940658569, -8.605660438537598, -0.4735637903213501, 2.6741855144500732, -5.359188079833984, -2.6673784255981445, 0.6660736799240112, 15.443212509155273, 4.740597724914551, -3.4725306034088135, 11.592561721801758, -2.05450701713562, 1.7361239194869995, -8.26533031463623, -9.304476737976074, 5.406835079193115, -1.5180232524871826, -7.746610641479492, -6.089605331420898, 0.07112561166286469, -0.34904858469963074, -8.649889945983887, -9.998958587646484, -2.5648481845855713, -0.5399898886680603, 2.6018145084381104, -0.31927648186683655, -1.8815231323242188, -2.0721378326416016, -3.4105639457702637, -8.299802780151367, 1.4836379289627075, -15.366002082824707, -8.288193702697754, 3.884773015975952, -3.4876506328582764, 7.362995624542236, 0.4657321572303772, 3.1326000690460205, 12.438883781433105, -1.8337029218673706, 4.532927513122559, 2.726433277130127, 10.145345687866211, -6.521956920623779, 2.8971481323242188, -3.3925881385803223, 5.079156398773193, 7.759725093841553, 4.677562236785889, 5.8457818031311035, 2.4023921489715576, 7.707108974456787, 3.9711389541625977, -6.390035152435303, 6.126871109008789, -3.776031017303467, -11.118141174316406]}} ``` #### 7.2 Get the score between speaker audio embedding **Note:** The response time will be slightly longer when using the client for the first time - Command Line (Recommended) If `127.0.0.1` is not accessible, you need to use the actual service IP address. ``` bash paddlespeech_client vector --task score --server_ip 127.0.0.1 --port 8090 --enroll 85236145389.wav --test 123456789.wav ``` Usage: ``` bash paddlespeech_client vector --help ``` Arguments: * server_ip: server ip. Default: 127.0.0.1 * port: server port. Default: 8090 * input(required): Input text to generate. * task: the task of vector, can be use 'spk' or 'score。If get the score, this must be 'score' parameter. * enroll: enroll audio * test: test audio Output: ```text [2022-08-01 09:04:42,275] [ INFO] - vector score http client start [2022-08-01 09:04:42,275] [ INFO] - enroll audio: 85236145389.wav, test audio: 123456789.wav [2022-08-01 09:04:42,275] [ INFO] - endpoint: http://127.0.0.1:8090/paddlespeech/vector/score [2022-08-01 09:04:44,611] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'score': 0.4292638897895813}} [2022-08-01 09:04:44,611] [ INFO] - Response time 2.336258 s. ``` * Python API ``` python from paddlespeech.server.bin.paddlespeech_client import VectorClientExecutor import json vectorclient_executor = VectorClientExecutor() res = vectorclient_executor( input=None, enroll_audio="85236145389.wav", test_audio="123456789.wav", server_ip="127.0.0.1", port=8090, task="score") print(res.json()) ``` Output: ```text {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'score': 0.4292638897895813}} ``` ### 8. Punctuation prediction **Note:** The response time will be slightly longer when using the client for the first time - Command Line (Recommended) If `127.0.0.1` is not accessible, you need to use the actual service IP address. ``` bash paddlespeech_client text --server_ip 127.0.0.1 --port 8090 --input "我认为跑步最重要的就是给我带来了身体健康" ``` Usage: ```bash paddlespeech_client text --help ``` Arguments: - `server_ip`: server ip. Default: 127.0.0.1 - `port`: server port. Default: 8090 - `input`(required): Input text to get punctuation. Output: ```text [2022-05-09 18:19:04,397] [ INFO] - The punc text: 我认为跑步最重要的就是给我带来了身体健康。 [2022-05-09 18:19:04,397] [ INFO] - Response time 0.092407 s. ``` - Python API ```python from paddlespeech.server.bin.paddlespeech_client import TextClientExecutor textclient_executor = TextClientExecutor() res = textclient_executor( input="我认为跑步最重要的就是给我带来了身体健康", server_ip="127.0.0.1", port=8090,) print(res) ``` Output: ```text 我认为跑步最重要的就是给我带来了身体健康。 ``` ## Models supported by the service ### ASR model Get all models supported by the ASR service via `paddlespeech_server stats --task asr`, where static models can be used for paddle inference inference. ### TTS model Get all models supported by the TTS service via `paddlespeech_server stats --task tts`, where static models can be used for paddle inference inference. ### CLS model Get all models supported by the CLS service via `paddlespeech_server stats --task cls`, where static models can be used for paddle inference inference. ### Vector model Get all models supported by the TTS service via `paddlespeech_server stats --task vector`, where static models can be used for paddle inference inference. ### Text model Get all models supported by the CLS service via `paddlespeech_server stats --task text`, where static models can be used for paddle inference inference.