#!/bin/bash config_path=$1 train_output_path=$2 ckpt_name=$3 stage=1 stop_stage=1 # use am to predict duration here # 增加 am_phones_dict am_tones_dict 等,也可以用新的方式构造 am, 不需要这么多参数了就 # pwgan if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then FLAGS_allocator_strategy=naive_best_fit \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python3 ${BIN_DIR}/synthesize.py \ --erniesat_config=${config_path} \ --erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ --erniesat_stat=dump/train/speech_stats.npy \ --voc=pwgan_vctk \ --voc_config=pwg_vctk_ckpt_0.1.1/default.yaml \ --voc_ckpt=pwg_vctk_ckpt_0.1.1/snapshot_iter_1500000.pdz \ --voc_stat=pwg_vctk_ckpt_0.1.1/feats_stats.npy \ --test_metadata=dump/test/norm/metadata.jsonl \ --output_dir=${train_output_path}/test \ --phones_dict=dump/phone_id_map.txt fi # hifigan if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then FLAGS_allocator_strategy=naive_best_fit \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python3 ${BIN_DIR}/synthesize.py \ --erniesat_config=${config_path} \ --erniesat_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ --erniesat_stat=dump/train/speech_stats.npy \ --voc=hifigan_vctk \ --voc_config=hifigan_vctk_ckpt_0.2.0/default.yaml \ --voc_ckpt=hifigan_vctk_ckpt_0.2.0/snapshot_iter_2500000.pdz \ --voc_stat=hifigan_vctk_ckpt_0.2.0/feats_stats.npy \ --test_metadata=dump/test/norm/metadata.jsonl \ --output_dir=${train_output_path}/test \ --phones_dict=dump/phone_id_map.txt fi