# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) """Encoder self-attention layer definition.""" import paddle from paddle import nn from paddlespeech.t2s.modules.layer_norm import LayerNorm class EncoderLayer(nn.Layer): """Encoder layer module. Parameters ---------- size : int Input dimension. self_attn : nn.Layer Self-attention module instance. `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance can be used as the argument. feed_forward : nn.Layer Feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. feed_forward_macaron : nn.Layer Additional feed-forward module instance. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. conv_module : nn.Layer Convolution module instance. `ConvlutionModule` instance can be used as the argument. dropout_rate : float Dropout rate. normalize_before : bool Whether to use layer_norm before the first block. concat_after : bool Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) stochastic_depth_rate : float Proability to skip this layer. During training, the layer may skip residual computation and return input as-is with given probability. """ def __init__( self, size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, normalize_before=True, concat_after=False, stochastic_depth_rate=0.0, ): """Construct an EncoderLayer object.""" super().__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.feed_forward_macaron = feed_forward_macaron self.conv_module = conv_module self.norm_ff = LayerNorm(size) # for the FNN module self.norm_mha = LayerNorm(size) # for the MHA module if feed_forward_macaron is not None: self.norm_ff_macaron = LayerNorm(size) self.ff_scale = 0.5 else: self.ff_scale = 1.0 if self.conv_module is not None: self.norm_conv = LayerNorm(size) # for the CNN module self.norm_final = LayerNorm( size) # for the final output of the block self.dropout = nn.Dropout(dropout_rate) self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size) self.stochastic_depth_rate = stochastic_depth_rate def forward(self, x_input, mask, cache=None): """Compute encoded features. Parameters ---------- x_input : Union[Tuple, paddle.Tensor] Input tensor w/ or w/o pos emb. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/o pos emb: Tensor (#batch, time, size). mask : paddle.Tensor Mask tensor for the input (#batch, time). cache paddle.Tensor Cache tensor of the input (#batch, time - 1, size). Returns ---------- paddle.Tensor Output tensor (#batch, time, size). paddle.Tensor Mask tensor (#batch, time). """ if isinstance(x_input, tuple): x, pos_emb = x_input[0], x_input[1] else: x, pos_emb = x_input, None skip_layer = False # with stochastic depth, residual connection `x + f(x)` becomes # `x <- x + 1 / (1 - p) * f(x)` at training time. stoch_layer_coeff = 1.0 if self.training and self.stochastic_depth_rate > 0: skip_layer = paddle.rand(1).item() < self.stochastic_depth_rate stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) if skip_layer: if cache is not None: x = paddle.concat([cache, x], axis=1) if pos_emb is not None: return (x, pos_emb), mask return x, mask # whether to use macaron style if self.feed_forward_macaron is not None: residual = x if self.normalize_before: x = self.norm_ff_macaron(x) x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( self.feed_forward_macaron(x)) if not self.normalize_before: x = self.norm_ff_macaron(x) # multi-headed self-attention module residual = x if self.normalize_before: x = self.norm_mha(x) if cache is None: x_q = x else: assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) x_q = x[:, -1:, :] residual = residual[:, -1:, :] mask = None if mask is None else mask[:, -1:, :] if pos_emb is not None: x_att = self.self_attn(x_q, x, x, pos_emb, mask) else: x_att = self.self_attn(x_q, x, x, mask) if self.concat_after: x_concat = paddle.concat((x, x_att), axis=-1) x = residual + stoch_layer_coeff * self.concat_linear(x_concat) else: x = residual + stoch_layer_coeff * self.dropout(x_att) if not self.normalize_before: x = self.norm_mha(x) # convolution module if self.conv_module is not None: residual = x if self.normalize_before: x = self.norm_conv(x) x = residual + stoch_layer_coeff * self.dropout(self.conv_module(x)) if not self.normalize_before: x = self.norm_conv(x) # feed forward module residual = x if self.normalize_before: x = self.norm_ff(x) x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( self.feed_forward(x)) if not self.normalize_before: x = self.norm_ff(x) if self.conv_module is not None: x = self.norm_final(x) if cache is not None: x = paddle.concat([cache, x], axis=1) if pos_emb is not None: return (x, pos_emb), mask return x, mask