# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Load nnet3 training egs which generated by kaldi """ import random import numpy as np import kaldi_python_io as k_io from paddle.io import Dataset import paddlespeech.vector.utils.utils as utils from paddlespeech.vector import _logger as log class KaldiEgsDataset(Dataset): """ Dataset used to load kaldi nnet3 egs files. """ def __init__(self, egs_list_file, egs_idx, transforms=None): self.scp_reader = None self.subset_idx = egs_idx - 1 self.transforms = transforms if not utils.is_exist(egs_list_file): return self.egs_files = [] with open(egs_list_file, 'r') as in_fh: for line in in_fh: if line.strip(): self.egs_files.append(line.strip()) self.next_subset() def next_subset(self, target_index=None, delta_index=None): """ Use next specific subset Args: target_index: target egs index delta_index: incremental value of egs index """ if self.egs_files: if target_index: self.subset_idx = target_index else: delta_index = delta_index if delta_index else 1 self.subset_idx += delta_index log.info("egs dataset subset index: %d" % (self.subset_idx)) egs_file = self.egs_files[self.subset_idx % len(self.egs_files)] if utils.is_exist(egs_file): self.scp_reader = k_io.Nnet3EgsScriptReader(egs_file) else: log.warning("No such file or directory: %s" % (egs_file)) def __getitem__(self, index): if self.scp_reader is None: return {} index %= len(self) in_dict, out_dict = self.scp_reader[index] x = np.array(in_dict['matrix']) x = np.transpose(x) y = np.array(out_dict['matrix'][0][0][0], dtype=np.int).reshape((1,)) if self.transforms is not None: idx = random.randint(0, len(self.transforms) - 1) x = self.transforms[idx](x) return x, y def __len__(self): return len(self.scp_reader) def __iter__(self): self._start = 0 return self def __next__(self): if self._start < len(self): ret = self[self._start] self._start += 1 return ret else: raise StopIteration