# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil from pathlib import Path import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle import nn from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from paddle.optimizer import Adam # No RAdaom from paddle.optimizer.lr import StepDecay from yacs.config import CfgNode from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.vocoder_batch_fn import Clip from paddlespeech.t2s.models.parallel_wavegan import PWGDiscriminator from paddlespeech.t2s.models.parallel_wavegan import PWGEvaluator from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator from paddlespeech.t2s.models.parallel_wavegan import PWGUpdater from paddlespeech.t2s.modules.losses import MultiResolutionSTFTLoss from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer from paddlespeech.t2s.utils import str2bool def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly world_size = paddle.distributed.get_world_size() if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0: paddle.set_device("cpu") else: paddle.set_device("gpu") if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = DataTable( data=train_metadata, fields=["wave", "feats"], converters={ "wave": np.load, "feats": np.load, }, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = DataTable( data=dev_metadata, fields=["wave", "feats"], converters={ "wave": np.load, "feats": np.load, }, ) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) dev_sampler = DistributedBatchSampler( dev_dataset, batch_size=config.batch_size, shuffle=False, drop_last=False) print("samplers done!") train_batch_fn = Clip( batch_max_steps=config.batch_max_steps, hop_size=config.n_shift, aux_context_window=config.generator_params.aux_context_window) train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=train_batch_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, batch_sampler=dev_sampler, collate_fn=train_batch_fn, num_workers=config.num_workers) print("dataloaders done!") generator = PWGGenerator(**config["generator_params"]) discriminator = PWGDiscriminator(**config["discriminator_params"]) if world_size > 1: generator = DataParallel(generator) discriminator = DataParallel(discriminator) print("models done!") criterion_stft = MultiResolutionSTFTLoss(**config["stft_loss_params"]) criterion_mse = nn.MSELoss() print("criterions done!") lr_schedule_g = StepDecay(**config["generator_scheduler_params"]) gradient_clip_g = nn.ClipGradByGlobalNorm(config["generator_grad_norm"]) optimizer_g = Adam( learning_rate=lr_schedule_g, grad_clip=gradient_clip_g, parameters=generator.parameters(), **config["generator_optimizer_params"]) lr_schedule_d = StepDecay(**config["discriminator_scheduler_params"]) gradient_clip_d = nn.ClipGradByGlobalNorm(config["discriminator_grad_norm"]) optimizer_d = Adam( learning_rate=lr_schedule_d, grad_clip=gradient_clip_d, parameters=discriminator.parameters(), **config["discriminator_optimizer_params"]) print("optimizers done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = PWGUpdater( models={ "generator": generator, "discriminator": discriminator, }, optimizers={ "generator": optimizer_g, "discriminator": optimizer_d, }, criterions={ "stft": criterion_stft, "mse": criterion_mse, }, schedulers={ "generator": lr_schedule_g, "discriminator": lr_schedule_d, }, dataloader=train_dataloader, discriminator_train_start_steps=config.discriminator_train_start_steps, lambda_adv=config.lambda_adv, output_dir=output_dir) evaluator = PWGEvaluator( models={ "generator": generator, "discriminator": discriminator, }, criterions={ "stft": criterion_stft, "mse": criterion_mse, }, dataloader=dev_dataloader, lambda_adv=config.lambda_adv, output_dir=output_dir) trainer = Trainer( updater, stop_trigger=(config.train_max_steps, "iteration"), out=output_dir, profiler_options=args.profiler_options) if dist.get_rank() == 0: trainer.extend( evaluator, trigger=(config.eval_interval_steps, 'iteration')) trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration')) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(config.save_interval_steps, 'iteration')) # print(trainer.extensions.keys()) print("Trainer Done!") trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser( description="Train a ParallelWaveGAN model.") parser.add_argument( "--config", type=str, help="config file to overwrite default config.") parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--dev-metadata", type=str, help="dev data.") parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") benchmark_group = parser.add_argument_group( 'benchmark', 'arguments related to benchmark.') benchmark_group.add_argument( "--batch-size", type=int, default=8, help="batch size.") benchmark_group.add_argument( "--max-iter", type=int, default=400000, help="train max steps.") benchmark_group.add_argument( "--run-benchmark", type=str2bool, default=False, help="runing benchmark or not, if True, use the --batch-size and --max-iter." ) benchmark_group.add_argument( "--profiler_options", type=str, default=None, help="The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\"." ) args = parser.parse_args() with open(args.config, 'rt') as f: config = CfgNode(yaml.safe_load(f)) # 增加 --batch_size --max_iter 用于 benchmark 调用 if args.run_benchmark: config.batch_size = args.batch_size config.train_max_steps = args.max_iter print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.ngpu > 1: dist.spawn(train_sp, (args, config), nprocs=args.ngpu) else: train_sp(args, config) if __name__ == "__main__": main()