# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path def generate_finetune_env(output_dir: Path, pretrained_model_dir: Path): output_dir = output_dir / "checkpoints/" output_dir = output_dir.resolve() output_dir.mkdir(parents=True, exist_ok=True) model_path = sorted(list((pretrained_model_dir).rglob("*.pdz")))[0] model_path = model_path.resolve() iter = int(str(model_path).split("_")[-1].split(".")[0]) model_file = str(model_path).split("/")[-1] os.system("cp %s %s" % (model_path, output_dir)) records_file = output_dir / "records.jsonl" with open(records_file, "w") as f: line = "\"time\": \"2022-08-06 07:51:53.463650\", \"path\": \"%s\", \"iteration\": %d" % ( str(output_dir / model_file), iter) f.write("{" + line + "}" + "\n") if __name__ == '__main__': # parse config and args parser = argparse.ArgumentParser( description="Preprocess audio and then extract features.") parser.add_argument( "--pretrained_model_dir", type=str, default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", help="Path to pretrained model") parser.add_argument( "--output_dir", type=str, default="./exp/default/", help="directory to save finetune model.") args = parser.parse_args() output_dir = Path(args.output_dir).expanduser() output_dir.mkdir(parents=True, exist_ok=True) pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() generate_finetune_env(output_dir, pretrained_model_dir)