# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import shutil from pathlib import Path from typing import List import jsonlines import numpy as np import paddle import yaml from paddle import DataParallel from paddle import distributed as dist from paddle.io import DataLoader from paddle.io import DistributedBatchSampler from yacs.config import CfgNode from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_multi_spk_batch_fn from paddlespeech.t2s.datasets.am_batch_fn import fastspeech2_single_spk_batch_fn from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.models.fastspeech2 import FastSpeech2 from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Evaluator from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Updater from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.optimizer import build_optimizers from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.trainer import Trainer class TrainArgs(): def __init__(self, ngpu, config_file, dump_dir: Path, output_dir: Path, frozen_layers: List[str]): # config: fastspeech2 config file. self.config = str(config_file) self.train_metadata = str(dump_dir / "train/norm/metadata.jsonl") self.dev_metadata = str(dump_dir / "dev/norm/metadata.jsonl") # model output dir. self.output_dir = str(output_dir) self.ngpu = ngpu self.phones_dict = str(dump_dir / "phone_id_map.txt") self.speaker_dict = str(dump_dir / "speaker_id_map.txt") self.voice_cloning = False # frozen layers self.frozen_layers = frozen_layers def freeze_layer(model, layers: List[str]): """freeze layers Args: layers (List[str]): frozen layers """ for layer in layers: for param in eval("model." + layer + ".parameters()"): param.trainable = False def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0: paddle.set_device("cpu") else: paddle.set_device("gpu") world_size = paddle.distributed.get_world_size() if world_size > 1: paddle.distributed.init_parallel_env() # set the random seed, it is a must for multiprocess training seed_everything(config.seed) print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) fields = [ "text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy" ] converters = {"speech": np.load, "pitch": np.load, "energy": np.load} spk_num = None if args.speaker_dict is not None: print("multiple speaker fastspeech2!") collate_fn = fastspeech2_multi_spk_batch_fn with open(args.speaker_dict, 'rt') as f: spk_id = [line.strip().split() for line in f.readlines()] spk_num = len(spk_id) fields += ["spk_id"] elif args.voice_cloning: print("Training voice cloning!") collate_fn = fastspeech2_multi_spk_batch_fn fields += ["spk_emb"] converters["spk_emb"] = np.load else: print("single speaker fastspeech2!") collate_fn = fastspeech2_single_spk_batch_fn print("spk_num:", spk_num) # dataloader has been too verbose logging.getLogger("DataLoader").disabled = True # construct dataset for training and validation with jsonlines.open(args.train_metadata, 'r') as reader: train_metadata = list(reader) train_dataset = DataTable( data=train_metadata, fields=fields, converters=converters, ) with jsonlines.open(args.dev_metadata, 'r') as reader: dev_metadata = list(reader) dev_dataset = DataTable( data=dev_metadata, fields=fields, converters=converters, ) # collate function and dataloader train_batch_size = min(len(train_metadata), config.batch_size) train_sampler = DistributedBatchSampler( train_dataset, batch_size=train_batch_size, shuffle=True, drop_last=True) print("samplers done!") train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=collate_fn, num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, shuffle=False, drop_last=False, batch_size=config.batch_size, collate_fn=collate_fn, num_workers=config.num_workers) print("dataloaders done!") with open(args.phones_dict, "r") as f: phn_id = [line.strip().split() for line in f.readlines()] vocab_size = len(phn_id) print("vocab_size:", vocab_size) odim = config.n_mels model = FastSpeech2( idim=vocab_size, odim=odim, spk_num=spk_num, **config["model"]) # freeze layer if args.frozen_layers != []: freeze_layer(model, args.frozen_layers) if world_size > 1: model = DataParallel(model) print("model done!") optimizer = build_optimizers(model, **config["optimizer"]) print("optimizer done!") output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) if dist.get_rank() == 0: config_name = args.config.split("/")[-1] # copy conf to output_dir shutil.copyfile(args.config, output_dir / config_name) updater = FastSpeech2Updater( model=model, optimizer=optimizer, dataloader=train_dataloader, output_dir=output_dir, **config["updater"]) trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir) evaluator = FastSpeech2Evaluator( model, dev_dataloader, output_dir=output_dir, **config["updater"]) if dist.get_rank() == 0: trainer.extend(evaluator, trigger=(1, "epoch")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend( Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) trainer.run() if __name__ == '__main__': # parse config and args parser = argparse.ArgumentParser( description="Preprocess audio and then extract features.") parser.add_argument( "--pretrained_model_dir", type=str, default="./pretrained_models/fastspeech2_aishell3_ckpt_1.1.0", help="Path to pretrained model") parser.add_argument( "--dump_dir", type=str, default="./dump", help="directory to save feature files and metadata.") parser.add_argument( "--output_dir", type=str, default="./exp/default/", help="directory to save finetune model.") parser.add_argument( "--ngpu", type=int, default=2, help="if ngpu=0, use cpu.") parser.add_argument("--epoch", type=int, default=100, help="finetune epoch") parser.add_argument( "--finetune_config", type=str, default="./finetune.yaml", help="Path to finetune config file") args = parser.parse_args() dump_dir = Path(args.dump_dir).expanduser() dump_dir.mkdir(parents=True, exist_ok=True) output_dir = Path(args.output_dir).expanduser() output_dir.mkdir(parents=True, exist_ok=True) pretrained_model_dir = Path(args.pretrained_model_dir).expanduser() # read config config_file = pretrained_model_dir / "default.yaml" with open(config_file) as f: config = CfgNode(yaml.safe_load(f)) config.max_epoch = config.max_epoch + args.epoch with open(args.finetune_config) as f2: finetune_config = CfgNode(yaml.safe_load(f2)) config.batch_size = finetune_config.batch_size if finetune_config.batch_size > 0 else config.batch_size config.optimizer.learning_rate = finetune_config.learning_rate if finetune_config.learning_rate > 0 else config.optimizer.learning_rate config.num_snapshots = finetune_config.num_snapshots if finetune_config.num_snapshots > 0 else config.num_snapshots frozen_layers = finetune_config.frozen_layers assert type(frozen_layers) == list, "frozen_layers should be set a list." # create a new args for training train_args = TrainArgs(args.ngpu, config_file, dump_dir, output_dir, frozen_layers) # finetune models # dispatch if args.ngpu > 1: dist.spawn(train_sp, (train_args, config), nprocs=args.ngpu) else: train_sp(train_args, config)