{
"cells": [
{
"cell_type": "markdown",
"id": "piano-accent",
"metadata": {},
"source": [
"# Derivative of CTC Loss\n",
"\n",
"关于CTC的介绍已经有很多不错的教程了,但是完整的描述CTCLoss的前向和反向过程的很少,而且有些公式推导省略和错误。本文主要关注CTC Loss的梯度是如何计算的,关于CTC的介绍这里不做过多赘述,具体参看文末参考。\n",
"\n",
"CTC主要应用于语音和OCR中,已语音[Deepspeech2](https://arxiv.org/abs/1512.02595)模型为例,CTC的网络一般如下图所示,包含softmax和CTCLoss两部分。反向传播需要求得loss L相对于logits $u^i$的梯度。下面先介绍CTCLoss的前向计算。\n",
"\n",
"> 图片来源于文末参考\n",
"\n",
"![img](./img/ctc_loss_backward_1.png)\n",
"\n",
"## CTC Loss 的计算\n",
"\n",
"CTC中path的定义与概率的计算如下:\n",
"\n",
"\n",
"\n",
"path 是 $ L'^T$的元素,用 $ \\pi $表示。 $ \\textbf{x} $ 是输入特征,$\\textbf{y}$ 是输出label, 都是序列。 $ L $ 是输出的 vocab, L‘ 是 $ L \\cup {blank}$。 $y_{\\pi_{t}}^t$ 表示在t时刻,$\\pi_{t}$ label时的观察概率。其中$\\pi_{t}$ 表示 $\\pi$ path在t时刻的label。$\\pi$ 是 $\\textbf{y}$ 与 $ \\textbf{x}$ 的一个alignment,长度是$T$,取值空间为$L'$。path也称为alignment。\n",
"\n",
"公式(2)解释了给定输入 $\\textbf{x}$ ,输出 $ \\pi $ path 的概率,即从时间t=1到T每个时间点的概率 $y_{\\pi_{t}}^t$ 相乘。\n",
"\n",
"求出单条path后,就可以计算$p(l \\mid x)$ 的概率,计算如下:\n",
"\n",
"\n",
"\n",
"这里边 $\\mathcal{B}$ 就是映射, 即所有多对一的映射(many-to-one mapping )的集合。 这样就算出来对应一个真正的 label $\\textbf{l}$ 的概率了,这里是求和。 求和的原因就是 aab 和 abb 都是对应成ab, 所以 aab 的概率 + abb 的概率才是生成ab的概率。 \n",
"\n",
"公式(3)解释了给定输入 $\\mathbf{x}$ ,求输出$\\mathbf{l}$ 的概率, 即所有集合 $\\mathcal{B}^{-1} (\\mathbf{l})$ 中 path的概率和。\n",
"\n",
"### CTC forward-backward 算法\n",
"\n",
"CTC的优化采用算最大似然估计[MLE (maximum likelihood estimation)](https://en.wikipedia.org/wiki/Maximum_likelihood_estimation), 这个和神经网络本身的训练过程是一致的。\n",
"\n",
"这个CTC 计算过程类似HMM的 [forward-backward algorithm](https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm),下面就是这个算法的推导过程:\n",
"\n",
"\n",
"\n",
"上图中的定义很清楚, 但是$ \\alpha_{t-1}(s) $ and $ \\alpha_{t-1}(s-1)$ 和 $\\alpha_t(s)$ 的关系也不那么好看出来,下图给出了具体的关于 $\\alpha_t(s)$ 的推导过程:\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"这里的公式比较适合用下面的图来理解,$\\alpha_1(1)$ 其实对应的就是下图中左上角白色的圆圈。 就是上来第一个是blank 的概率, 而 $\\alpha_1(2)$是label l 的第一个字母。 这里边我们假设每个字母之间都插入了空白,即label l扩展成l',例如,l=[a, b, b, c], l'=[-, a, -, b, -, b, -, c, -]。 然后对于其他圆点,在时间是1 的情况下概率都是 0. Figure 3中横轴是时间 t,从左到右是1到T;纵轴是s(sequence),从上到下是 1 到 $\\mathbf{\\mid l' \\mid}$.\n",
"\n",
"\n",
"\n",
"接下来我们分析递归公式 (resursion),更多介绍可以参看 [2]. 公式6分情况考虑:\n",
"\n",
"* 第一种情况就是当前的label是blank, 或者 $\\mathbf{l'}_{s}= \\mathbf{l'}_{s-2}$(相邻是重复字符):\n",
"\n",
" ![img](https://distill.pub/2017/ctc/assets/cost_no_skip.svg)\n",
"\n",
" 这个时候他的概率来自于过去t-1的两个label 概率, 也就是 $a_{t-1} (s)$ 和 $a_{t-1} (s-1)$ 。\n",
"\n",
" $ a_{t-1} (s)$ 就是说当前的 sequence 已经是s 了,figure 3中表现为横跳, blank -->blank(例如t=3, s=3);\n",
"\n",
" 而 $a_{t-1} (s-1) $是说明当前的字符还不够, 需要再加一个, 所以在figure 3中就是斜跳,从黑色圆圈到白色圆圈(例如,t=3, s=5)。\n",
"\n",
" 仔细观察figure 3, 除了第一排的白色圆圈, 其他白色圆圈都有两个输入, 就是上述的两种情况。 当然判断blank 的方法也可以是判断$I'_{s-2} = I'_{s}$. 这种情况也是说明$I'_{s}$ 是blank, 因为每一个字符必须用 blank 隔开, 即使是相同字符。\n",
"\n",
"* 第二章情况 也可以用类似逻辑得出, 只不过当前的状态s 是黑色圆圈, 有三种情况输入。\n",
"\n",
" ![img](https://distill.pub/2017/ctc/assets/cost_regular.svg)\n",
"\n",
"最终的概率就如公式8 所示, 这个计算过程就是 CTC forward algroirthm, 基于 Fig. 3 的左边的初始条件。\n",
"\n",
"\n",
"\n",
"基于Fig. 3 右边的初始条件,我们还是可以计算出一个概率, 那个就是 **CTC backward**. 这里我就不详细介绍了, 直接截图。\n",
"\n",
"\n",
"\n",
"这样一直做乘法, 数字值越来越小,很快就会underflow。 这个时候就需要做 scaling.\n",
"\n",
"\n",
"\n",
"算出了forward probability 和 backward probability 有什么用呢, 解释如下图。\n",
"\n",
"\n",
"\n",
"上图是说 forward probability and backward probability 的乘积, 代表了这个 sequence $\\mathbf{l}$ t时刻,是s label 的 所有paths 的概率。 这样的话 我们就计算了 Fig. 3 中的每个圆圈的概率。为什么$\\alpha_t(s)\\beta_t(s)$ 中多出一个 $y^t_{\\mathbf{l'_s}}$ ,这是因为它在 $\\alpha$ 和 $\\beta$ 中都包含该项,合并公式后就多出一项。\n",
"\n",
"\n",
"\n",
"$p(\\mathbf{l}|\\mathbf{x})$ 可以通过任意时刻 t 的所有 s 的 foward-backward 概率计算得来。取负对数后就是单个样本的NLL(Negative Log Likelihood)。\n",
"\n",
"### 总结\n",
"\n",
"总结一下,根据前向概率计算CTCLoss函数,可以得出如下结论:\n",
"\n",
"1. 对于时序长度为T的输入序列x和输出序列z,前向概率:\n",
" $$\n",
" \\begin{split}\n",
" \\alpha_t(s) &= \\sum_{ \\underset{\\pi_t=l'_s}{\\pi \\in \\mathcal{B}^{-1}(z)} } p(\\pi_{1:t}|x) \\newline\n",
" \\alpha_1(1) &= y_{-}^1 ; \\quad \\alpha_1(2)=y^1_{l'_2}, \\quad \\alpha_1(s)=0, \\forall s > 2 \\newline\n",
" \\alpha_t(s) &= 0, \\quad \\forall s < |l'| - 2(T-t) - 1 ,\\quad \\text{or} \\quad \\forall s < 1 \\newline\n",
" \\alpha_t(s) &=\n",
" \\begin{cases}\n",
" (\\alpha_{t-1}(s) + \\alpha_{t-1}(s-1) ) y^t_{l'_s} & \\text{if $l'_s=b$ or $l'_{s-2} = l'_s$} \\newline\n",
" (\\alpha_{t-1}(s) + \\alpha_{t-1}(s-1) + \\alpha_{t-1}(s-2))y^t_{l'_s} & \\text{otherwise}\\newline\n",
" \\end{cases} \n",
" \\end{split}\n",
" $$\n",
"\n",
"2. 利用 $\\alpha_t(s)$ 计算CTCLoss:\n",
" $$\n",
" -ln(p(l \\mid x)) = -ln(\\alpha_{T}(|l'|)+\\alpha_{T}(|l'|-1))\n",
" $$\n",
"\n",
"根据后向概率计算CTCLoss函数,可以得出如下结论:\n",
"\n",
"1. 对于时序长度为T的输入序列x和输出序列z,后向概率: \n",
" $$\n",
" \\begin{split}\n",
" \\beta_t(s) &= \\sum_{ \\underset{\\pi_t=l'_s}{\\pi \\in \\mathcal{B}^{-1}(z)} } p(\\pi_{t:T}|x) \\newline\n",
" \\beta_T(|l'|) &= y_{-}^T ; \\quad \\beta_T(|l'|-1)=y^T_{l'_{|l'|-1}}, \\quad \\beta_T(s)=0, \\forall s < |l'| - 1 \\newline\n",
" \\beta_t(s) &= 0, \\text{$\\forall s > 2t$ or $\\forall s < |l'|$} \\newline\n",
" \\beta_t(s) &=\n",
" \\begin{cases}\n",
" (\\beta_{t+1}(s) + \\beta_{t+1}(s+1) ) y^t_{l'_s} & \\text{if $l'_s=b$ or $l'_{s+2} = l'_s$} \\newline\n",
" (\\beta_{t+1}(s) + \\beta_{t+1}(s+1) + \\beta_{t+1}(s+2))y^t_{l'_s} & \\text{otherwise}\\newline\n",
" \\end{cases}\n",
" \\end{split}\n",
" $$\n",
"\n",
" 2. 利用 $\\beta_t(s)$计算CTCLoss:\n",
"\n",
"$$\n",
"-ln(p(l \\mid x)) = -ln(\\beta_{1}(1)+\\beta_{1}(2)) \\newline\n",
"$$\n",
"\n",
"根据任意时刻的前向概率和后向概率计算CTC Loss函数,得到如下结论:\n",
"\n",
"1. 对于任意时刻t,利用前向概率和后向概率计算CTCLoss:\n",
"\n",
"$$\n",
"p(l \\mid x) = \\sum_{s=1}^{|l'|} \\frac{\\alpha_t(s)\\beta_t(s)}{y_{l'_s}^t} \\newline\n",
"-ln(p(l \\mid x)) = -ln( \\sum_{s=1}^{|l'|} \\frac{\\alpha_t(s) \\beta_t(s)}{y_{l'_s}^t} )\n",
"$$\n",
"我们已经得到CTCLoss的计算方法,接下来对其进行求导。\n"
]
},
{
"cell_type": "markdown",
"id": "viral-fitting",
"metadata": {},
"source": [
"## CTC梯度计算\n",
"\n",
"### 微分公式\n",
"\n",
"在计算梯度前,我们先回顾下基本的微分公式: \n",
"$$\n",
"C' = 0 \\\\\n",
"x' = 1 \\newline\n",
"x^n = n \\cdot x^{n-1} \\newline\n",
"(e^x)' = e^x \\newline\n",
"log(x)' = \\frac{1}{x} \\newline\n",
"(u + v)' = u' + v' \\newline\n",
"(\\frac{u}{v})' = \\frac{u'v-uv'}{v^2} \\newline\n",
"\\frac{\\mathrm{d}f(g(x))}{\\mathrm{d}x} = \\frac{\\mathrm{d}f(g(x))}{\\mathrm{d}g(x)} \\cdot \\frac{\\mathrm{d}g(x)}{\\mathrm{d}x}\n",
"$$\n"
]
},
{
"cell_type": "markdown",
"id": "starting-sender",
"metadata": {},
"source": [
"### CTC梯度\n",
"\n",
"最大似然估计训练就是最大化训练集中每一个分类的对数概率,即最小化Eq. 12。\n",
"\n",
"\n",
"\n",
"最后就是算微分了, 整个推导过程就是加法和乘法, 都可以微分。 $\\mathit{O}^{ML}$关于神经网络的输出 $y^t_k$的梯度见Eq. 13。因为训练样本是相互独立的,所以可以单独考虑每个样本,公式如Eq.13。\n",
"\n",
"下面是CTCLoss的梯度计算:\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "stretch-order",
"metadata": {},
"source": [
"### CTC梯度推导\n",
"\n",
"回顾下之前的公式,便于理解后续推导过程。 \n",
"\n",
"$$\n",
"p(l \\mid x) = \\sum_{s=1}^{|l'|} \\frac{\\alpha_t(s)\\beta_t(s)}{y_{l'_s}^t} \\\\\n",
"\\begin{equation}\n",
"\\alpha_t(s) \\beta_t(s) = \\sum_{ \\underset{\\pi_t=l'_s}{\\pi \\in \\mathcal{B}^{-1}(l):} } y^t_{l'_s} \\prod_{t=1}^T y^t_{\\pi_t}\n",
"\\end{equation}\n",
"$$\n",
"\n",
"其中Eq. 15的计算过程如下: \n",
"\n",
"$$\n",
"\\begin{align*}\n",
"\\frac{\\partial p(\n",
"l \\mid x)}{\\partial y_k^t}\n",
" & = \\sum_{s \\in lab(z,k)} \\frac{ \\partial \\frac{ \\alpha_t(s) \\beta_t(s)}{y_{k}^t}}{\\partial y_k^t} \n",
" \\newline\n",
" & = \\sum_{s \\in lab(z,k)} \\frac{(\\alpha_t(s)\\beta_t(s))’y_k^t - \\alpha_t(s)\\beta_t(s){y_k^t}'}{{y_k^t}^2}\n",
" \\newline\n",
" &= \\sum_{s \\in lab(z,k)} \\frac{( \\prod_{t'=1}^{t-1} y^{t'}_{\\pi_{t'}} \\cdot y_k^t \\cdot y_k^t \\cdot \\prod_{t'=t+1}^{T} y^{t'}_{\\pi_{t'}} )’ y_k^t - \\alpha_t(s)\\beta_t(s){y_k^t}'}{{y_k^t}^2}\n",
" \\newline\n",
" &= \\sum_{s \\in lab(z,k)} \\frac{2\\alpha_t(s)\\beta_t(s) - \\alpha_t(s)\\beta_t(s)}{{y_k^t}^2}\n",
" \\newline\n",
" &= \\sum_{s \\in lab(z,k)} \\frac{\\alpha_t(s)\\beta_t(s)}{{y_k^t}^2}\n",
" \\newline\n",
" &= \\frac{1}{{y_k^t}^2} \\sum_{s \\in lab(z,k)} \\alpha_t(s)\\beta_t(s) \\tag{1} \\newline\n",
"\\end{align*}\n",
"$$\n",
"\n",
"\n",
"NLL的公式推导如下:\n",
"$$\n",
"\\begin{split}\n",
"\\frac{\\partial {ln(p(l \\mid x))} }{ \\partial y^t_k }\n",
" &= \\frac{1}{p(l \\mid x)} \\frac{ \\partial{p(l \\mid x)} }{ \\partial y_k^t } \\newline\n",
" &= \\frac{1}{p(l \\mid x) {y^t_k}^2 } \\sum_{s \\in lab(z,k)} \\alpha_t(s)\\beta_t(s) \n",
"\\end{split}\n",
"\\tag{2}\n",
"$$\n",
"\n",
"\n",
"已经算出了CTCLoss对于 $y_k^t$ 的梯度,接下来我们需要计算 CTCLoss对于$u^t_k$(logits)的梯度。套用链式法则,并替换$y^t_k$ 为 $y^t_{k'}$,结果如下图。图中 $k'$ 表示vocab中的某一个token,$K$ 是vocab的大小。\n",
"\n",
"![](./img/ctc_loss_backward_2.png)\n",
"\n",
"图中公式4根据链式法则得到:\n",
"$$\n",
"- \\frac{ \\partial ln(p(l \\mid x)) }{ \\partial u^t_k }\n",
" = - \\sum_{k'=1}^{K} \\frac{ \\partial ln(p(l \\mid x)) }{ \\partial y^t_{k'} } \\frac{ \\partial y^t_{k'} }{ \\partial u^t_k } \\tag{4}\n",
"$$\n",
"图中公式3是softmax的梯度,参考 [4],计算过程如下:\n",
"$$\n",
"softmax(j) = S_j = \\frac{ e^{a_j} }{ \\sum_{k=1}^K e^{a_k} }, \\enspace \\forall j \\in 1 \\dots K\n",
"$$\n",
"\n",
"$$\n",
"\\begin{split}\n",
"\\frac{ \\partial S_i }{ \\partial a_j}\n",
" &= \\frac{ \\partial (\\frac{ e^{ a_i } }{ \\sum_k e^{ a_k } }) } { \\partial a_j }\n",
" \\newline\n",
" &= \n",
" \\begin{cases}\n",
" \t\\frac{ e^a_i \\sum - e^a_j e^a_i }{ \\sum^2 } \n",
" \t&= \\frac{ e^a_i }{ \\sum } \\frac{ \\sum - e^a_j }{ \\sum } \\newline\n",
" &= S_i(1-S_j) & \\text{i = j, $\\sum$ stands for $\\sum_{k=1}^K e^a_k$} \n",
" \t\\newline\n",
" \t\\frac{ 0 - e^a_j e^a_i }{ \\sum^2 } \n",
" \t&= - \\frac{ e^a_j }{ \\sum } \\frac{ e^a_i }{ \\sum } \\newline\n",
" &= -S_j S_i & \\text{i $\\neq$ j, $\\sum$ stands for $\\sum_{k=1}^K e^a_k$}\n",
" \\end{cases}\n",
" \\newline\n",
" &= \n",
" \\begin{cases}\n",
" S_i(1 - S_j) & \\text{$i = j$} \n",
" \\newline\n",
" -S_j S_i = S_i (0 - S_j) & \\text{$i \\neq j$}\n",
" \\end{cases}\n",
" \\newline\n",
" &= S_i (\\delta_{ij} - S_j )\n",
"\\end{split}\n",
"\\tag{3}\n",
"$$\n",
"$$\n",
"\\delta_{ij} =\n",
" \\begin{cases}\n",
" 1 & \\text{if i = j} \\newline\n",
" 0 & \\text{otherwise}\n",
" \\end{cases}\n",
"$$\n",
"\n",
"\n",
"\n",
"下图中黄色框中的部分表示公式(1),即遍历所有的vocab中的token,其结果是$p(l \\mid x)$。这是因为label $l$ 中的token一定在vocab中,且 $s \\in lab(l, k')$ 可以是空集。当 $k'$ 在 l 中,s 则为label中token是$k'$的概率;当$k'$不在l中,s为空,概率为0。\n",
"\n",
"![img](./img/ctc_loss_backward_3.png)\n",
"\n",
"公式(2),(3)带入(4),并结合公式(1)的结果如上图右边,即:\n",
"$$\n",
"\\begin{split}\n",
"- \\frac{ \\partial ln(p(l \\mid x)) }{ \\partial u^t_k } &= \n",
"\t- \\sum_{k'=1}^K \\frac{ \\partial ln(p(l \\mid x)) }{ \\partial y^t_{k'} } \\frac{ \\partial y^t_{k'}}{ \\partial u^t_k } \\newline\n",
"\t&= - \\sum_{k'=1}^K \\frac{ y^t_{k'}( \\delta_{kk'} - y^t_k ) }{ p(l \\mid x) {y^t_{k'}}^2 } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) \\newline\n",
"\t&= - \\sum_{k'=1}^K \\frac{ \\delta_{kk'} - y^t_k }{ p(l \\mid x) y^t_{k'} } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) \\newline\n",
"\t&= \\sum_{k'=1}^K \\frac{ y^t_k - \\delta_{kk'} }{ p(l \\mid x) y^t_{k'} } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) \\newline\n",
"\t&= \\sum_{k'=1}^K \\frac{ y^t }{ p(l \\mid x) y^t_{k'} } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) - \\sum_{k'=1}^K \\frac{ \\delta_{kk'} }{ p(l \\mid x) y^t_{k'} } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) \\newline\n",
"\t&= \\frac{ y^t_k }{ p(l \\mid x) } ( \\sum_{k'=1}^K \\frac{1}{y^t_{k'}} \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) ) - \\sum_{k'=1}^K \\frac{ \\delta_{kk'} }{ p(l \\mid x) y^t_{k'} } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) \\newline\n",
"\t&= \\frac{ y^t_k }{ p(l \\mid x) } p(l \\mid x) - \\sum_{k'=1}^K \\frac{ \\delta_{kk'} }{ p(l \\mid x) y^t_{k'} } \\sum_{s \\in lab(l, k') } \\alpha_t(s) \\beta_t(s) \\newline\n",
"\t&= y^t_k - \\frac{ 1 }{ p(l \\mid x) y^t_k } \\sum_{s \\in lab(l, k)} \\alpha_t(s) \\beta_t(s) \\newline\n",
"\\end{split}\n",
"$$\n",
"最终,为了通过softmax层传播CTCLoss的梯度,需要计算目标函数与 logits $u^t_k$ 的偏微分,即Eq. 16: \n",
" $$\n",
" \\begin{align*}\n",
" \\hat{\\alpha}_t(s) & \\overset{def}{=} \\frac{ \\alpha_t(s) }{ C_t } ,\\enspace C_t \\overset{def}{=} \\sum_s \\alpha_t(s) \n",
" \\newline\n",
" \\hat{\\beta}_t(s) & \\overset{def}{=} \\frac{ \\beta_t(s) }{ D_t } ,\\enspace D_t \\overset{def}{=} \\sum_s \\beta_t(s) \n",
" \\newline\n",
" - \\frac{ \\partial ln(p(l \\mid x)) }{ \\partial u^t_k } &= y^t_k - \\frac{1}{y^t_k \\sum_{s=1}^{\\mid l' \\mid} \\frac{ \\hat{\\alpha}_t(s) \\hat{\\beta}_t(s) }{ y^t_{l'_s} } } \\sum_{s \\in lab(l, k)} \\hat{\\alpha}_t(s) \\hat{\\beta}_t(s) \\tag{16} \n",
" \\newline\n",
" \\end{align*}\n",
" $$"
]
},
{
"cell_type": "markdown",
"id": "informative-maria",
"metadata": {},
"source": [
"### 总结\n",
"\n",
"* 通过动态规划算法计算$\\alpha_t(s)$ 和 $\\beta_t(s)$\n",
"\n",
"* 通过$\\alpha_t(s)$ 计算 $p(l \\mid x)=\\alpha_T(\\mid l' \\mid) + \\alpha_T(\\mid l' \\mid -1)$\n",
"\n",
"* 通过$\\alpha_t(s)$ 和 $\\beta_t(s)$\n",
"\n",
"* 计算CTcLoss函数的导数: \n",
" $$\n",
" \\begin{split}\n",
" - \\frac{ \\partial ln(p(l \\mid x)) }{ \\partial u^t_k } \n",
" &= y^t_k - \\frac{ 1 }{ p(l \\mid x) y^t_k } \\sum_{s \\in lab(l, k)} \\alpha_t(s) \\beta_t(s) \n",
" \\newline\n",
" &= y^t_k - \\frac{1}{y^t_k \\sum_{s=1}^{\\mid l' \\mid} \\frac{ \\hat{\\alpha}_t(s) \\hat{\\beta}_t(s) }{ y^t_{l'_s} } } \\sum_{s \\in lab(l, k)} \\hat{\\alpha}_t(s) \\hat{\\beta}_t(s) \n",
" \\newline\n",
" \\end{split}\n",
" \\tag{16}\n",
" $$"
]
},
{
"cell_type": "markdown",
"id": "41637c03",
"metadata": {},
"source": [
"## Source Code\n",
"本人在 [warp-ctc](https://github.com/zh794390558/warp-ctc) 上加了注释,并调整 index 的索引方式,便于理解代码。\n",
"对比上面的公式推导和lattice图可以快速理解 ctc 实现。"
]
},
{
"cell_type": "markdown",
"id": "coordinated-music",
"metadata": {},
"source": [
"## Reference\n",
"\n",
"[[1] A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber. Connectionist Temporal lassification: Labeling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.](http://www.cs.toronto.edu/~graves/icml_2006.pdf)\n",
"\n",
"[[2] Sequence ModelingWith CTC](https://distill.pub/2017/ctc/)\n",
"\n",
"[[3] NLP 之 CTC Loss 的工作原理](https://www.jianshu.com/p/e073c9d91b20)\n",
"\n",
"[[4] The Softmax function and its derivative](https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/)\n",
"\n",
"[[5] CTC Algorithm Explained Part 1:Training the Network(CTC算法详解之训练篇)](https://xiaodu.io/ctc-explained/)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "closing-candy",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}