"""Contains the audio featurizer class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from data_utils import utils from data_utils.audio import AudioSegment class AudioFeaturizer(object): """Audio featurizer, for extracting features from audio contents of AudioSegment or SpeechSegment. Currently, it only supports feature type of linear spectrogram. :param specgram_type: Specgram feature type. Options: 'linear'. :type specgram_type: str :param stride_ms: Striding size (in milliseconds) for generating frames. :type stride_ms: float :param window_ms: Window size (in milliseconds) for generating frames. :type window_ms: float :param max_freq: Used when specgram_type is 'linear', only FFT bins corresponding to frequencies between [0, max_freq] are returned. :types max_freq: None|float """ def __init__(self, specgram_type='linear', stride_ms=10.0, window_ms=20.0, max_freq=None): self._specgram_type = specgram_type self._stride_ms = stride_ms self._window_ms = window_ms self._max_freq = max_freq def featurize(self, audio_segment): """Extract audio features from AudioSegment or SpeechSegment. :param audio_segment: Audio/speech segment to extract features from. :type audio_segment: AudioSegment|SpeechSegment :return: Spectrogram audio feature in 2darray. :rtype: ndarray """ return self._compute_specgram(audio_segment.samples, audio_segment.sample_rate) def _compute_specgram(self, samples, sample_rate): """Extract various audio features.""" if self._specgram_type == 'linear': return self._compute_linear_specgram( samples, sample_rate, self._stride_ms, self._window_ms, self._max_freq) else: raise ValueError("Unknown specgram_type %s. " "Supported values: linear." % self._specgram_type) def _compute_linear_specgram(self, samples, sample_rate, stride_ms=10.0, window_ms=20.0, max_freq=None, eps=1e-14): """Compute the linear spectrogram from FFT energy.""" if max_freq is None: max_freq = sample_rate / 2 if max_freq > sample_rate / 2: raise ValueError("max_freq must be greater than half of " "sample rate.") if stride_ms > window_ms: raise ValueError("Stride size must not be greater than " "window size.") stride_size = int(0.001 * sample_rate * stride_ms) window_size = int(0.001 * sample_rate * window_ms) specgram, freqs = self._specgram_real( samples, window_size=window_size, stride_size=stride_size, sample_rate=sample_rate) ind = np.where(freqs <= max_freq)[0][-1] + 1 return np.log(specgram[:ind, :] + eps) def _specgram_real(self, samples, window_size, stride_size, sample_rate): """Compute the spectrogram for samples from a real signal.""" # extract strided windows truncate_size = (len(samples) - window_size) % stride_size samples = samples[:len(samples) - truncate_size] nshape = (window_size, (len(samples) - window_size) // stride_size + 1) nstrides = (samples.strides[0], samples.strides[0] * stride_size) windows = np.lib.stride_tricks.as_strided( samples, shape=nshape, strides=nstrides) assert np.all( windows[:, 1] == samples[stride_size:(stride_size + window_size)]) # window weighting, squared Fast Fourier Transform (fft), scaling weighting = np.hanning(window_size)[:, None] fft = np.fft.rfft(windows * weighting, axis=0) fft = np.absolute(fft)**2 scale = np.sum(weighting**2) * sample_rate fft[1:-1, :] *= (2.0 / scale) fft[(0, -1), :] /= scale # prepare fft frequency list freqs = float(sample_rate) / window_size * np.arange(fft.shape[0]) return fft, freqs