# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Beam search parameters tuning for DeepSpeech2 model.""" import functools import sys import numpy as np from paddle.io import DataLoader from deepspeech.exps.deepspeech2.config import get_cfg_defaults from deepspeech.io.collator import SpeechCollator from deepspeech.io.dataset import ManifestDataset from deepspeech.models.deepspeech2 import DeepSpeech2Model from deepspeech.training.cli import default_argument_parser from deepspeech.utils import error_rate from deepspeech.utils.utility import add_arguments from deepspeech.utils.utility import print_arguments def tune(config, args): """Tune parameters alpha and beta incrementally.""" if not args.num_alphas >= 0: raise ValueError("num_alphas must be non-negative!") if not args.num_betas >= 0: raise ValueError("num_betas must be non-negative!") config.defrost() config.data.manfiest = config.data.dev_manifest config.data.augmentation_config = "" config.data.keep_transcription_text = True dev_dataset = ManifestDataset.from_config(config) valid_loader = DataLoader( dev_dataset, batch_size=config.data.batch_size, shuffle=False, drop_last=False, collate_fn=SpeechCollator(keep_transcription_text=True)) model = DeepSpeech2Model.from_pretrained(dev_dataset, config, args.checkpoint_path) model.eval() # decoders only accept string encoded in utf-8 vocab_list = valid_loader.dataset.vocab_list errors_func = error_rate.char_errors if config.decoding.error_rate_type == 'cer' else error_rate.word_errors # create grid for search cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas) cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas) params_grid = [(alpha, beta) for alpha in cand_alphas for beta in cand_betas] err_sum = [0.0 for i in range(len(params_grid))] err_ave = [0.0 for i in range(len(params_grid))] num_ins, len_refs, cur_batch = 0, 0, 0 # initialize external scorer model.decoder.init_decode(args.alpha_from, args.beta_from, config.decoding.lang_model_path, vocab_list, config.decoding.decoding_method) ## incremental tuning parameters over multiple batches print("start tuning ...") for infer_data in valid_loader(): if (args.num_batches >= 0) and (cur_batch >= args.num_batches): break def ordid2token(texts, texts_len): """ ord() id to chr() chr """ trans = [] for text, n in zip(texts, texts_len): n = n.numpy().item() ids = text[:n] trans.append(''.join([chr(i) for i in ids])) return trans audio, audio_len, text, text_len = infer_data target_transcripts = ordid2token(text, text_len) num_ins += audio.shape[0] # model infer eouts, eouts_len = model.encoder(audio, audio_len) probs = model.decoder.softmax(eouts) # grid search for index, (alpha, beta) in enumerate(params_grid): print(f"tuneing: alpha={alpha} beta={beta}") result_transcripts = model.decoder.decode_probs( probs.numpy(), eouts_len, vocab_list, config.decoding.decoding_method, config.decoding.lang_model_path, alpha, beta, config.decoding.beam_size, config.decoding.cutoff_prob, config.decoding.cutoff_top_n, config.decoding.num_proc_bsearch) for target, result in zip(target_transcripts, result_transcripts): errors, len_ref = errors_func(target, result) err_sum[index] += errors # accumulate the length of references of every batchπ # in the first iteration if args.alpha_from == alpha and args.beta_from == beta: len_refs += len_ref err_ave[index] = err_sum[index] / len_refs if index % 2 == 0: sys.stdout.write('.') sys.stdout.flush() print("tuneing: one grid done!") # output on-line tuning result at the end of current batch err_ave_min = min(err_ave) min_index = err_ave.index(err_ave_min) print("\nBatch %d [%d/?], current opt (alpha, beta) = (%s, %s), " " min [%s] = %f" % (cur_batch, num_ins, "%.3f" % params_grid[min_index][0], "%.3f" % params_grid[min_index][1], config.decoding.error_rate_type, err_ave_min)) cur_batch += 1 # output WER/CER at every (alpha, beta) print("\nFinal %s:\n" % config.decoding.error_rate_type) for index in range(len(params_grid)): print("(alpha, beta) = (%s, %s), [%s] = %f" % ("%.3f" % params_grid[index][0], "%.3f" % params_grid[index][1], config.decoding.error_rate_type, err_ave[index])) err_ave_min = min(err_ave) min_index = err_ave.index(err_ave_min) print("\nFinish tuning on %d batches, final opt (alpha, beta) = (%s, %s)" % (cur_batch, "%.3f" % params_grid[min_index][0], "%.3f" % params_grid[min_index][1])) print("finish tuning") def main(config, args): tune(config, args) if __name__ == "__main__": parser = default_argument_parser() add_arg = functools.partial(add_arguments, argparser=parser) add_arg('num_batches', int, -1, "# of batches tuning on. " "Default -1, on whole dev set.") add_arg('num_alphas', int, 45, "# of alpha candidates for tuning.") add_arg('num_betas', int, 8, "# of beta candidates for tuning.") add_arg('alpha_from', float, 1.0, "Where alpha starts tuning from.") add_arg('alpha_to', float, 3.2, "Where alpha ends tuning with.") add_arg('beta_from', float, 0.1, "Where beta starts tuning from.") add_arg('beta_to', float, 0.45, "Where beta ends tuning with.") add_arg('batch_size', int, 256, "# of samples per batch.") add_arg('beam_size', int, 500, "Beam search width.") add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.") add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") args = parser.parse_args() print_arguments(args, globals()) # https://yaml.org/type/float.html config = get_cfg_defaults() if args.config: config.merge_from_file(args.config) if args.opts: config.merge_from_list(args.opts) config.data.batch_size = args.batch_size config.decoding.beam_size = args.beam_size config.decoding.num_proc_bsearch = args.num_proc_bsearch config.decoding.cutoff_prob = args.cutoff_prob config.decoding.cutoff_top_n = args.cutoff_top_n config.freeze() print(config) if args.dump_config: with open(args.dump_config, 'w') as f: print(config, file=f) main(config, args)